Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2023_33_1_a2, author = {Yang, Linna and Xie, Tao and Liu, Mingxing and Zhang, Mingjiang and Qi, Shuaihui and Yang, Jungang}, title = {Infrared small-target detection under a complex background based on a local gradient contrast method}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {33--43}, publisher = {mathdoc}, volume = {33}, number = {1}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_1_a2/} }
TY - JOUR AU - Yang, Linna AU - Xie, Tao AU - Liu, Mingxing AU - Zhang, Mingjiang AU - Qi, Shuaihui AU - Yang, Jungang TI - Infrared small-target detection under a complex background based on a local gradient contrast method JO - International Journal of Applied Mathematics and Computer Science PY - 2023 SP - 33 EP - 43 VL - 33 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_1_a2/ LA - en ID - IJAMCS_2023_33_1_a2 ER -
%0 Journal Article %A Yang, Linna %A Xie, Tao %A Liu, Mingxing %A Zhang, Mingjiang %A Qi, Shuaihui %A Yang, Jungang %T Infrared small-target detection under a complex background based on a local gradient contrast method %J International Journal of Applied Mathematics and Computer Science %D 2023 %P 33-43 %V 33 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_1_a2/ %G en %F IJAMCS_2023_33_1_a2
Yang, Linna; Xie, Tao; Liu, Mingxing; Zhang, Mingjiang; Qi, Shuaihui; Yang, Jungang. Infrared small-target detection under a complex background based on a local gradient contrast method. International Journal of Applied Mathematics and Computer Science, Tome 33 (2023) no. 1, pp. 33-43. http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_1_a2/
[1] [1] Aghaziyarati, S., Moradi, S. and Talebi, H. (2019). Small infrared target detection using absolute average difference weighted by cumulative directional derivatives, Infrared Physics and Technology 101: 78-87, DOI: 10.1016/j.infrared.2019.06.003.
[2] [2] Andrysiak, T. and Choras, M. (2005). Image retrieval based on hierarchical Gabor filters, International Journal of Applied Mathematics and Computer Science 15(4): 471-480.
[3] [3] Baran, R., Rusc, T. and Fornalski, P. (2016). A smart camera for the surveillance of vehicles in intelligent transportation systems, Multimedia Tools and Applications 75(17): 10471-10493, DOI: 10.1007/s11042-015-3151-y.
[4] [4] Chen, C.L.P., Li, H., Wei, Y.T., Xia, T. and Tang, Y.Y. (2014). A local contrast method for small infrared target detection, IEEE Transactions on Geoscience and Remote Sensing 52(1): 574-581, DOI: 10.1109/TGRS.2013.2242477.
[5] [5] Chmiel, W., Danda, J., Dziech, A., Ernst, S., Kadluczka, P., Mikrut, Z., Pawlik, P., Szwed, P. and Wojnicki, I. (2016). Insigma: An intelligent transportation system for urban mobility enhancement, Multimedia Tools and Applications 75(17): 10529-10560, DOI: 10.1007/s11042-016-3367-5.
[6] [6] Deng, H., Sun, X.P., Liu, M.L., Ye, C.H. and Zhou, X. (2016). Infrared small-target detection using multiscale gray difference weighted image entropy, IEEE Transactions on Aerospace and Electronic Systems 52(1): 60-72, DOI: 10.1109/TAES.2015.140878.
[7] [7] Deshpande, S.D., Meng, H.E., Ronda, V. and Chan, P. (1999). Max-mean and max-median filters for detection of small-targets, Proceedings of SPIE 3809: 74-83.
[8] [8] Han, J.H., Liang, K., Zhou, B., Zhu, X.Y., Zhao, J. and Zhao, L.L. (2018a). Infrared small target detection utilizing the multiscale relative local contrast measure, IEEE Geoscience and Remote Sensing Letters 15(4): 612-616, DOI: 10.1109/LGRS.2018.2790909.
[9] [9] Han, J.H., Liu, S.B., Qin, G., Zhao, Q., Zhang, H.H. and Li, N.N. (2019). A local contrast method combined with adaptive background estimation for infrared small target detection, IEEE Geoscience and Remote Sensing Letters 16(9): 1442-1446, DOI: 10.1109/LGRS.2019.2898893.
[10] [10] Han, J.H., Moradi, S., Faramarzi, I., Liu, C.Y., Zhang, H.H. and Zhao, Q. (2020). A local contrast method for infrared small-target detection utilizing a tri-layer window, IEEE Geoscience and Remote Sensing Letters 17(10): 1822-1826, DOI: 10.1109/LGRS.2019.2954578.
[11] [11] Han, J.H., Yu, Y. and Liang, K. (2018b). Infrared small-target detection under complex background based on subblock-level ratio-difference joint local contrast measure, Optical Engineering 57(10): 103105, DOI: 10.1117/1.OE.57.10.103105.
[12] [12] Kowalski, M., Kaczmarek, P., Kabaciński, R., Matuszczak, M., Tranbowicz, K. and Sobkowiak, R. (2014). A simultaneous localization and tracking method for a worm tracking system, International Journal of Applied Mathematics and Computer Science 24(3): 599-609, DOI: 10.2478/amcs-2014-0043.
[13] [13] Li, H., Wang, Q., Wang, H. and Yang, W.K. (2021). Infrared small target detection using tensor based least mean square, Computers and Electrical Engineering 91: 106994, DOI: 10.1016/j.compeleceng.2021.106994.
[14] [14] Li, W., Zhao, M.J., Deng, X.Y., Li, L., Li, L.W. and Zhang, W.J. (2019). Infrared small target detection using local and nonlocal spatial information, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 12(9): 3677-3689, DOI: 10.1109/JSTARS.2019.2931566.
[15] [15] Liu, J., He, Z.Q., Chen, Z.L. and Shao, L. (2018a). Tiny and dim infrared target detection based on weighted local contrast, IEEE Geoscience and Remote Sensing Letters 15(11): 1780-1784, DOI: 10.1109/LGRS.2018.2856762.
[16] [16] Liu, J., He, Z.Q., Chen, Z.L. and Shao, L. (2018b). Tiny and dim infrared target detection based on weighted local contrast, IEEE Geoscience and Remote Sensing Letters 15(11): 1780-1784, DOI: 10.1109/LGRS.2018.2856762.
[17] [17] Nasiri, M. and Chehresa, S. (2017). Infrared small target enhancement based on variance difference, Infrared Physics and Technology 82: 107-119, DOI: 10.1016/j.infrared.2017.03.003.
[18] [18] Shi, Y.F., Wei, Y.T., Yao, H., Pan, D.H. and Xiao, G.R. (2018). High-boost-based multiscale local contrast measure for infrared small target detection, IEEE Geoscience and Remote Sensing Letters 15(1): 33-37, DOI: 10.1109/LGRS.2017.2772030.
[19] [19] Tabor, Z. (2010). Surrogate data: A novel approach to object detection, International Journal of Applied Mathematics and Computer Science 20(3): 545-553, DOI: 10.2478/v10006-010-0040-4.
[20] [20] Uzair, M., Brinkworth, R.S. and Finn, A. (2020). A bio-inspired spatiotemporal contrast operator for small and low-heat-signature target detection in infrared imagery, Neural Computing and Applications 33(13): 7311-7324, DOI: 10.1007/s00521-020-05206-w.
[21] [21] Wei, Y.T., You, X.G. and Li, H. (2016). Multiscale patch-based contrast measure for small infrared target detection, Pattern Recognition 58: 216-226, DOI: 10.1016/j.patcog.2016.04.002.
[22] [22] Xia, C.Q., Li, X.R., Zhao, L.Y. and Shu, R. (2020). Infrared small target detection based on multiscale local contrast measure using local energy factor, IEEE Geoscience and Remote Sensing Letters 17(1): 157-161, DOI: 10.1109/LGRS.2019.2914432.
[23] [23] Xie, T., Zhang, W.K., Yang, L.N., Wang, Q.P., Huang, J.J. and Yuan, N.C. (2018). Inshore ship detection based on level set method and visual saliency for sar images, Sensors 18(11): 3877, DOI: 10.3390/s18113877.
[24] [24] Xiong, B., Huang, X.H. and Wang, M. (2021). Local gradient field feature contrast measure for infrared small target detection, IEEE Geoscience and Remote Sensing Letters 18(3): 553-557, DOI: 10.1109/LGRS.2020.2976208.
[25] [25] Yang, L.L., Yan, P., Li, M.H., Zhang, J.L. and Xu, Z.Y. (2022). Infrared small target detection based on a group image-patch tensor model, IEEE Geoscience and Remote Sensing Letters 19: 1-5, DOI: 10.1109/LGRS.2021.3140067.
[26] [26] Yao, S.B., Zhu, Q.Y., Zhang, T., Cui, W.N. and Yan, P.M. (2022). Infrared image small-target detection based on improved FCOS and spatio-temporal features, Electronics 11(6): 933, DOI: 10.3390/electronics11060933.
[27] [27] Yu, X., Xie, W. and Yu, J. (2022). A single image deblurring approach based on a fractional order dark channel prior, International Journal of Applied Mathematics and Computer Science 32(3): 441–454, DOI: 10.34768/amcs-2022-0032.
[28] [28] Zhang, H., Zhang, L., Yuan, D. and Chen, H. (2018). Infrared small target detection based on local intensity and gradient properties, Infrared Physics and Technology 89: 88-96, DOI: 10.1016/j.infrared.2017.12.018.
[29] [29] Zhang, K., Yang, K., Li, S.Y. and Chen, H.B. (2019). A difference-based local contrast method for infrared small target detection under complex background, IEEE Access 7: 105503-105513, DOI: 10.1109/ACCESS.2019.2932729.
[30] [30] Zhang, W., Cong, M.Y. and Wang, L.P. (2003). Algorithms for optical weak small targets detection and tracking: Review, Proceedings of 2003 International Conference on Neural Networks and Signal Processing, Nanjing, China, pp. 643–647.