Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2021_31_2_a0, author = {Maksimov, Vyacheslav I.}, title = {On a stable solution of the problem of disturbance reduction}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {187--194}, publisher = {mathdoc}, volume = {31}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_2_a0/} }
TY - JOUR AU - Maksimov, Vyacheslav I. TI - On a stable solution of the problem of disturbance reduction JO - International Journal of Applied Mathematics and Computer Science PY - 2021 SP - 187 EP - 194 VL - 31 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_2_a0/ LA - en ID - IJAMCS_2021_31_2_a0 ER -
%0 Journal Article %A Maksimov, Vyacheslav I. %T On a stable solution of the problem of disturbance reduction %J International Journal of Applied Mathematics and Computer Science %D 2021 %P 187-194 %V 31 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_2_a0/ %G en %F IJAMCS_2021_31_2_a0
Maksimov, Vyacheslav I. On a stable solution of the problem of disturbance reduction. International Journal of Applied Mathematics and Computer Science, Tome 31 (2021) no. 2, pp. 187-194. http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_2_a0/
[1] [1] Cayero, J., Rotondo, D., Marcego, B., and Puig, V. (2019). Optimal state observation using quadratic boundedness: Application to UAV disturbance estimation, International Journal of Applied Mathematics and Computer Science 29(1): 99–109, DOI: 10.2478/amcs-2019-0008.
[2] [2] Falsone, A., Deori, L., Ioli, D., Garatti, S. and Prandini, M. (2019). Optimal disturbance compensation for constrained linear systems operating in stationary conditions: A scenario-based approach, Automatica 110: 108537.
[3] [3] Favini, A., Maksimov, V. and Pandolfi, L. (2004). A deconvolution problem related to a singular system, Journal of Mathematical Analysis and Applications 292(1): 60–72.
[4] [4] Gan,W.S. and Kuo, S.M. (2002). An integrated audio and active noise headsets, IEEE Transactions on Consumer Electronics 48(2): 242–247.
[5] [5] Keesman, K.J. and Maksimov, V.I. (2008). On feedback identification of unknown characteristics: A bioreactor case study, International Journal of Control 81(1): 134–145.
[6] [6] Kwakernaak, H. (2002). H2-optimization—Theory and applications to robust control design, Annual Reviews in Control 26(1): 45–56.
[7] [7] Maksimov, V.I. (2002). Dynamical Inverse Problems of Distributed Systems, VSP, Utrecht/Boston.
[8] [8] Maksimov, V. (2011). The tracking of the trajectory of a dynamical system, Journal of Applied Mathematics and Mechanics 75(6): 667–674.
[9] [9] Maksimov, V.I. and Mordukhovich, B.S. (2017). Feedback design of differential equations of reconstruction for second-order distributed systems, International Journal of Applied Mathematics and Computer Science 27(3): 467–475, DOI: 10.1515/amcs-2017-0032.
[10] [10] Maksimov, V. (2016). Game control problem for a phase field equation, Journal of Optimization Theory and Applications 170(1): 294–307.
[11] [11] Maksimov, V. and Tröltzsch, F. (2020). Input reconstruction by feedback control for the Schlögl and FitzHugh–Hagumo model, International Journal of Applied Mathematics and Computer Science 30(1): 5–22, DOI: 10.34768/amcs-2020-0001.
[12] [12] Osipov, Yu.S. and Kryazhimskii, A.V. (1995). Inverse Problems for Ordinary Differential Equations: Dynamical Solutions, Gordon and Breach, London.
[13] [13] Pandolfi, L. (2007). Adaptive recursive deconvolution and adaptive noise cancellation, International Journal of Control 80(3): 403–415.
[14] [14] Samarskii, A.A. (1971). Introduction to the Theory of Difference Schemes, Nauka, Moscow, (in Russian).
[15] [15] Yu, S.-H. and Hu, J.-S. (2001). Controller design for active noise cancellation headphones using experimental raw data, IEEE/ASME Transactions on Mechatronics 6(4): 483–490.
[16] [16] Wasilewski, M., Pisarski, D., Konowrocki, R., and Bajer, C.I. (2019). A new efficient adaptive control of torsional vibrations included by switched nonlinear disturbances, International Journal of Applied Mathematics and Computer Science 29(2): 285–303, DOI: 10.2478/amcs-2019-0021.
[17] [17] Willems, J.C. (1982). Feedforward control, PID control laws, and almost invariant subspaces, Systems and Control Letters 1(4): 277–282.
[18] [18] Yuan, Y., Wang, Z., Yu, Y., Guo, L., and Yang, H. (20019). Active disturbance rejection control for a pneumatic motion platform subject to actuator saturation: An extended state observer approach, Automatica 107: 353–361.