Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2021_31_1_a3, author = {Si, Xindong and Yang, Hongli and Ivanov, Ivan G.}, title = {Conditions and a computation method of the constrained regulation problem for a class of fractional-order nonlinear continuous-time systems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {17--28}, publisher = {mathdoc}, volume = {31}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_1_a3/} }
TY - JOUR AU - Si, Xindong AU - Yang, Hongli AU - Ivanov, Ivan G. TI - Conditions and a computation method of the constrained regulation problem for a class of fractional-order nonlinear continuous-time systems JO - International Journal of Applied Mathematics and Computer Science PY - 2021 SP - 17 EP - 28 VL - 31 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_1_a3/ LA - en ID - IJAMCS_2021_31_1_a3 ER -
%0 Journal Article %A Si, Xindong %A Yang, Hongli %A Ivanov, Ivan G. %T Conditions and a computation method of the constrained regulation problem for a class of fractional-order nonlinear continuous-time systems %J International Journal of Applied Mathematics and Computer Science %D 2021 %P 17-28 %V 31 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_1_a3/ %G en %F IJAMCS_2021_31_1_a3
Si, Xindong; Yang, Hongli; Ivanov, Ivan G. Conditions and a computation method of the constrained regulation problem for a class of fractional-order nonlinear continuous-time systems. International Journal of Applied Mathematics and Computer Science, Tome 31 (2021) no. 1, pp. 17-28. http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_1_a3/
[1] [1] Ammour, A.S., Djennoune, S., Aggoune, W. and Bettayeb, M. (2015). Stabilization of fractional-order linear systems with state and input delay, Asian Journal of Control 17(5): 1946–1954.
[2] [2] Athanasopoulos, N., Bitsoris, G. and Vassilaki, M. (2010). Stabilization of bilinear continuous-time systems, 18th Mediterranean Conference on Control Automation, Marrakech, Morocco, pp. 442–447.
[3] [3] Balochian, S. (2015). On the stabilization of linear time invariant fractional order commensurate switched systems, Asian Journal of Control 17(1): 133–141.
[4] [4] Benzaouia, A., Hmamed, A., Mesquine, F., Benhayoun, M. and Tadeo, F. (2014). Stabilization of continuous-time fractional positive systems by using a Lyapunov function, IEEE Transactions on Automatic Control 59(8): 2203–2208.
[5] [5] Chen, L., Wu, R., He, Y. and Yin, L. (2015). Robust stability and stabilization of fractional-order linear systems with polytopic uncertainties, Applied Mathematics Computation 257: 274–284.
[6] [6] Dastjerdi, A.A., Vinagre, B.M., Chen, Y. and HosseinNia, S.H. (2019). Linear fractional order controllers: A survey in the frequency domain, Annual Review in Control 47: 51–70.
[7] [7] Fernandez-Anaya, G., Nava-Antonio, G., Jamous-Galante, J., Munoz-Vega, R. and Hernandez-Martinez, E.G. (2016). Lyapunov functions for a class of nonlinear systems using caputo derivative, Communications in Nonlinear Science Numerical Simulation 43: 91–99.
[8] [8] Hao, Y. and Jiang, B. (2016). Stability of fractional-order switched non-linear systems, IET Control Theory Applications 10(8): 965–970.
[9] [9] Jiao, Z., Chen, Y.Q. and Zhong, Y. (2013). Stability analysis of linear time-invariant distributed-order systems, Asian Journal of Control 15(3): 640–647.
[10] [10] Kaczorek, T. (2010). Practical stability and asymptotic stability of positive fractional 2D linear systems, Asian Journal of Control 12(2): 200–207.
[11] [11] Kaczorek, T. (2018). Decentralized stabilization of fractional positive descriptor continuous-time linear systems, International Journal of Applied Mathematics Computer Science 28(1): 135–140, DOI: 10.2478/amcs-2018-0010.
[12] [12] Kaczorek, T. (2019). Absolute stability of a class of fractional positive nonlinear systems, International Journal of Applied Mathematics and Computer Science 29(1): 93–98, DOI: 10.2478/amcs-2019-0007.
[13] [13] Karthikeyan, R., Anitha, K. and Prakash, D. (2017). Hyperchaotic chameleon: Fractional order FPGA implementation, Complexity 2017(1): 1–16.
[14] [14] Lenka, B.K. (2018). Fractional comparison method and asymptotic stability results for multivariable fractional order systems, Communications in Nonlinear Science and Numerical Simulation 69: 398–415.
[15] [15] Lenka, B.K. and Banerjee, S. (2016). Asymptotic stability and stabilization of a class of nonautonomous fractional order systems, Nonlinear Dynamics 85(1): 167–177.
[16] [16] Li, Y., Chen, Y.Q. and Podlubny, I. (2010). Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffer stability, Computers Mathematics with Applications 59(5): 1810–1821.
[17] [17] Li, Y., Zhao, D., Chen, Y., Podlubny, I. and Zhang, C. (2019). Finite energy Lyapunov function candidate for fractional order general nonlinear systems, Communications in Nonlinear Science and Numerical Simulation 78: 1–16.
[18] [18] Lim, Y.-H. and Ahn, H.-S. (2013). On the positive invariance of polyhedral sets in fractional-order linear systems, Automatica 49(12): 3690–3694.
[19] [19] Liu, S., Zhou, X.F., Li, X. and Jiang, W. (2016). Asymptotical stability of Riemann–Liouville fractional singular systems with multiple time-varying delays, Applied Mathematics Letters 65(1): 32–39.
[20] [20] Ma, X., Xie, M., Wu, W., Zeng, B., Wang, Y. and Wu, X. (2019). The novel fractional discrete multivariate grey system model and its applications, Applied Mathematical Modelling 40: 402–424.
[21] [21] Martinezfuentes, O. and Martinezguerra, R. (2018). A novel Mittag-Leffler stable estimator for nonlinear fractional-order systems: A linear quadratic regulator approach, Nonlinear Dynamics 94(3): 1973–1986.
[22] [22] Sabatier, J., Farges, C. and Trigeassou, J.C. (2013). Fractional systems state space description: Some wrong ideas and proposed solutions, Journal of Vibration Control 20(7): 1076–1084.
[23] [23] Sabatier, J., Merveillaut, M., Malti, R. and Oustaloup, A. (2010). How to impose physically coherent initial conditions to a fractional system, Communications in Nonlinear Science Numerical Simulation 15(5): 1318–1326.
[24] [24] Shen, J. and Lam, J. (2016). Stability and performance analysis for positive fractional-order systems with time-varying delays, IEEE Transactions on Automatic Control 61(9): 2676–2681.
[25] [25] Si, X. and Yang, H. (2021). A new method for judgment and computation of stability and stabilization of fractional order positive systems with constraints, Journal of Shandong University of Science and Technology (Natural Science) 40(1): 12–20.
[26] [26] Song, X. and Zhen, W. (2013). Dynamic output feedback control for fractional-order systems, Asian Journal of Control 15(3): 834–848.
[27] [27] Wang, Z., Yang, D., Ma, t. and Ning, S. (2014). Stability analysis for nonlinear fractional-order systems based on comparison principle, Nonlinear Dynamics 75(1–2): 387–402.
[28] [28] Wang, Z., Yang, D. and Zhang, H. (2016). Stability analysis on a class of nonlinear fractional-order systems, Nonlinear Dynamics 86(2): 1023–1033.
[29] [29] Yan, L., Chen, Y. Q. and Podlubny, I. (2010). Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability, Computers Mathematics with Applications 59(5): 1810–1821.
[30] [30] Yang, H. and Hu, Y. (2020). Numerical checking method for positive invariance of polyhedral sets for linear dynamical system, Bulletin of the Polish Academy of Sciences: Technical Sciences 68(3): 23–29.
[31] [31] Yang, H. and Jia, Y. (2019). New conditions and numerical checking method for the practical stability of fractional order positive discrete-time linear systems, International Journal of Nonlinear Sciences and Numerical Simulation 20(3): 315–323.
[32] [32] Yepez-Martinez, H. and Gomez-Aguilar, J. (2018). A new modified definition of Caputo–Fabrizio fractional-order derivative and their applications to the multi step homotopy analysis method (MHAM), Journal of Computational Applied Mathematics 346: 247–260.
[33] [33] Yin, C., Zhong, S.M., Huang, X. and Cheng, Y. (2015). Robust stability analysis of fractional-order uncertain singular nonlinear system with external disturbance, Applied Mathematics Computation 269: 351–362.
[34] [34] Zhang, H., Wang, X.Y. and Lin, X.H. (2016). Stability and control of fractional chaotic complex networks with mixed interval uncertainties, Asian Journal of Control 19(1): 106–115.
[35] [35] Zhang, R., Tian, G., Yang, S. and Hefei, C. (2015a). Stability analysis of a class of fractional order nonlinear systems with order lying in (0,2), ISA Transactions 56: 102–110.
[36] [36] Zhang, S., Yu, Y. and Wang, H. (2015b). Mittag-Leffler stability of fractional-order Hopfield neural networks, Nonlinear Analysis Hybrid Systems 16: 104–121.
[37] [37] Zhang, S., Yu, Y. and Yu, J. (2017). LMI conditions for global stability of fractional-order neural networks, IEEE Transactions on Neural Networks Learning Systems 28(10): 2423–2433.
[38] [38] Zhao, Y., Li, Y., Zhou, F., Zhou, Z. and Chen, Y. (2017). An iterative learning approach to identify fractional order KiBaM model, IEEE/CAA Journal of Automatica Sinica 4(2): 322–331.