Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2020_30_3_a6, author = {Kaczorek, Tadeusz}, title = {Global stability of nonlinear feedback systems with fractional positive linear parts}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {493--499}, publisher = {mathdoc}, volume = {30}, number = {3}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_3_a6/} }
TY - JOUR AU - Kaczorek, Tadeusz TI - Global stability of nonlinear feedback systems with fractional positive linear parts JO - International Journal of Applied Mathematics and Computer Science PY - 2020 SP - 493 EP - 499 VL - 30 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_3_a6/ LA - en ID - IJAMCS_2020_30_3_a6 ER -
%0 Journal Article %A Kaczorek, Tadeusz %T Global stability of nonlinear feedback systems with fractional positive linear parts %J International Journal of Applied Mathematics and Computer Science %D 2020 %P 493-499 %V 30 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_3_a6/ %G en %F IJAMCS_2020_30_3_a6
Kaczorek, Tadeusz. Global stability of nonlinear feedback systems with fractional positive linear parts. International Journal of Applied Mathematics and Computer Science, Tome 30 (2020) no. 3, pp. 493-499. http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_3_a6/
[1] Berman A. and Plemmons R.J. (1994). Nonnegative Matrices in the Mathematical Sciences, SIAM, Philadelphia, MA.
[2] Borawski K. (2017). Modification of the stability and positivity of standard and descriptor linear electrical circuits by state feedbacks, Electrical Review 93(11): 176–180.
[3] Busłowicz M. and Kaczorek T. (2009). Simple conditions for practical stability of positive fractional discrete-time linear systems, International Journal of Applied and Mathematics and Computer Science 19(2): 263–269, DOI: 10.2478/v10006-009-0022-6.
[4] Farina L. and Rinaldi S. (2000). Positive Linear Systems: Theory and Applications, Wiley, New York, NY.
[5] Kaczorek T. (2019a). Absolute stability of a class of fractional positive nonlinear systems, International Journal of Applied Mathematics and Computer Science 29(1): 93–98, DOI: 10.2478/amcs-2019-0007.
[6] Kaczorek T. (2019b). Global stability of nonlinear feedback systems with positive linear parts, International Journal of Nonlinear Sciences and Numerical Simulation 20(5): 575–579, DOI: 10.1515/ijnsns-2018-0189.
[7] Kaczorek T. (2017). Superstabilization of positive linear electrical circuit by state-feedbacks, Bulletin of the Polish Academy of Sciences: Technical Sciences 65(5): 703–708.
[8] Kaczorek T. (2016). Analysis of positivity and stability of fractional discrete-time nonlinear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 64(3): 491–494.
[9] Kaczorek T. (2015a). Analysis of positivity and stability of discrete-time and continuous-time nonlinear systems, Computational Problems of Electrical Engineering 5(1): 11–16.
[10] Kaczorek T. (2015b). Stability of fractional positive nonlinear systems, Archives of Control Sciences 25(4): 491–496.
[11] Kaczorek T. (2012). Positive fractional continuous-time linear systems with singular pencils, Bulletin of the Polish Academy of Sciences: Technical Sciences 60(1): 9–12.
[12] Kaczorek T. (2011a). Positive linear systems consisting of n subsystems with different fractional orders, IEEE Transactions on Circuits and Systems 58(7): 1203–1210.
[13] Kaczorek T. (2011b). Selected Problems of Fractional Systems Theory, Springer, Berlin.
[14] Kaczorek T. (2010). Positive linear systems with different fractional orders, Bulletin of the Polish Academy of Sciences: Technical Sciences 58(3): 453–458.
[15] Kaczorek T. (2002). Positive 1D and 2D Systems, Springer, London.
[16] Kaczorek T. and Borawski K. (2017). Stability of positive nonlinear systems, 22nd International Conference on Methods and Models in Automation and Robotics, Międzyzdroje, Poland, pp. 564–569, DOI: 10.1109/MMAR.2017.8046890.
[17] Kaczorek T. and Rogowski K. (2015). Fractional Linear Systems and Electrical Circuits, Springer, Cham.
[18] Kudrewicz J. (1964). Stability of nonlinear systems with feedback, Avtomatika i Telemechanika 25(8): 821–837, (in Russian).
[19] Lyapunov A.M. (1963). The General Problem of Motion Stability, Gostechizdat, Moscow, (in Russian).
[20] Leipholz H. (1970). Stability Theory, Academic Press, New York, NY.
[21] Mitkowski W. (2008). Dynamical properties of Metzler systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 56(4): 309–312.
[22] Ostalczyk P. (2016). Discrete Fractional Calculus, World Scientific, River Edge, NJ.
[23] Podlubny I. (1999). Fractional Differential Equations, Academic Press, San Diego, CA.
[24] Ruszewski A. (2019). Stability conditions for fractional discrete-time state-space systems with delays, 24th International Conference on Methods and Models in Automation and Robotics, Międzyzdroje, Poland, pp. 185–190, DOI: 10.1109/MMAR.2019.8864689.
[25] Sajewski L. (2017a). Decentralized stabilization of descriptor fractional positive continuous-time linear systems with delays, 22nd International Conference on Methods and Models in Automation and Robotics, Miedzyzdroje, Poland, pp. 482-487.
[26] Sajewski L. (2017b). Stabilization of positive descriptor fractional discrete-time linear systems with two different fractional orders by decentralized controller, Bulletin of the Polish Academy of Sciences: Technical Sciences 65(5): 709–714.