Extremal properties of linear dynamic systems controlled by Dirac’s impulse
International Journal of Applied Mathematics and Computer Science, Tome 30 (2020) no. 1, pp. 75-81.

Voir la notice de l'article provenant de la source Library of Science

The paper concerns the properties of linear dynamical systems described by linear differential equations, excited by the Dirac delta function. A differential equation of the form an x(n) (t) + ∙∙∙ a1 x’(t) + a0 x(t) = bm u(m)
Keywords: extremal properties, Dirac's impulse, linear system, transfer function
Mots-clés : właściwości ekstremalne, impuls Diraca, układ liniowy, funkcja przenoszenia
@article{IJAMCS_2020_30_1_a5,
     author = {Bia{\l}as, Stanis{\l}aw and G\'orecki, Henryk and Zaczyk, Mieczys{\l}aw},
     title = {Extremal properties of linear dynamic systems controlled by {Dirac{\textquoteright}s} impulse},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {75--81},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_1_a5/}
}
TY  - JOUR
AU  - Białas, Stanisław
AU  - Górecki, Henryk
AU  - Zaczyk, Mieczysław
TI  - Extremal properties of linear dynamic systems controlled by Dirac’s impulse
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2020
SP  - 75
EP  - 81
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_1_a5/
LA  - en
ID  - IJAMCS_2020_30_1_a5
ER  - 
%0 Journal Article
%A Białas, Stanisław
%A Górecki, Henryk
%A Zaczyk, Mieczysław
%T Extremal properties of linear dynamic systems controlled by Dirac’s impulse
%J International Journal of Applied Mathematics and Computer Science
%D 2020
%P 75-81
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_1_a5/
%G en
%F IJAMCS_2020_30_1_a5
Białas, Stanisław; Górecki, Henryk; Zaczyk, Mieczysław. Extremal properties of linear dynamic systems controlled by Dirac’s impulse. International Journal of Applied Mathematics and Computer Science, Tome 30 (2020) no. 1, pp. 75-81. http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_1_a5/

[1] Górecki, H. (2018). Optimization and Control of Dynamic Systems, Springer, Cham.

[2] Górecki, H. and Zaczyk, M. (2013). Design of systems with extremal dynamic properties, Bulletin of the Polish Academy of Sciences: Technical Sciences 61(3): 563–567.

[3] Kaczorek, T. (2002). Positive 1D and 2D Systems, Springer, London.

[4] Kaczorek, T. (2018). A new method for determination of positive realizations of linear continuous-time systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 66(5): 605–611.

[5] Osiowski, J. (1965). An Outline of Operator Calculus. Theory and Applications in Electrical Engineering, WNT, Warsaw, (in Polish).