Extremal properties of linear dynamic systems controlled by Dirac’s impulse
International Journal of Applied Mathematics and Computer Science, Tome 30 (2020) no. 1, pp. 75-81
Cet article a éte moissonné depuis la source Library of Science
The paper concerns the properties of linear dynamical systems described by linear differential equations, excited by the Dirac delta function. A differential equation of the form an x(n) (t) + ∙∙∙ a1 x’(t) + a0 x(t) = bm u(m)
Keywords:
extremal properties, Dirac's impulse, linear system, transfer function
Mots-clés : właściwości ekstremalne, impuls Diraca, układ liniowy, funkcja przenoszenia
Mots-clés : właściwości ekstremalne, impuls Diraca, układ liniowy, funkcja przenoszenia
@article{IJAMCS_2020_30_1_a5,
author = {Bia{\l}as, Stanis{\l}aw and G\'orecki, Henryk and Zaczyk, Mieczys{\l}aw},
title = {Extremal properties of linear dynamic systems controlled by {Dirac{\textquoteright}s} impulse},
journal = {International Journal of Applied Mathematics and Computer Science},
pages = {75--81},
year = {2020},
volume = {30},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_1_a5/}
}
TY - JOUR AU - Białas, Stanisław AU - Górecki, Henryk AU - Zaczyk, Mieczysław TI - Extremal properties of linear dynamic systems controlled by Dirac’s impulse JO - International Journal of Applied Mathematics and Computer Science PY - 2020 SP - 75 EP - 81 VL - 30 IS - 1 UR - http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_1_a5/ LA - en ID - IJAMCS_2020_30_1_a5 ER -
%0 Journal Article %A Białas, Stanisław %A Górecki, Henryk %A Zaczyk, Mieczysław %T Extremal properties of linear dynamic systems controlled by Dirac’s impulse %J International Journal of Applied Mathematics and Computer Science %D 2020 %P 75-81 %V 30 %N 1 %U http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_1_a5/ %G en %F IJAMCS_2020_30_1_a5
Białas, Stanisław; Górecki, Henryk; Zaczyk, Mieczysław. Extremal properties of linear dynamic systems controlled by Dirac’s impulse. International Journal of Applied Mathematics and Computer Science, Tome 30 (2020) no. 1, pp. 75-81. http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_1_a5/
[1] Górecki, H. (2018). Optimization and Control of Dynamic Systems, Springer, Cham.
[2] Górecki, H. and Zaczyk, M. (2013). Design of systems with extremal dynamic properties, Bulletin of the Polish Academy of Sciences: Technical Sciences 61(3): 563–567.
[3] Kaczorek, T. (2002). Positive 1D and 2D Systems, Springer, London.
[4] Kaczorek, T. (2018). A new method for determination of positive realizations of linear continuous-time systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 66(5): 605–611.
[5] Osiowski, J. (1965). An Outline of Operator Calculus. Theory and Applications in Electrical Engineering, WNT, Warsaw, (in Polish).