Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2020_30_1_a12, author = {Michalak, Marcin and Jaksik, Roman and \'Sl\k{e}zak, Dominik}, title = {Heuristic search of exact biclusters in binary data}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {161--171}, publisher = {mathdoc}, volume = {30}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_1_a12/} }
TY - JOUR AU - Michalak, Marcin AU - Jaksik, Roman AU - Ślęzak, Dominik TI - Heuristic search of exact biclusters in binary data JO - International Journal of Applied Mathematics and Computer Science PY - 2020 SP - 161 EP - 171 VL - 30 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_1_a12/ LA - en ID - IJAMCS_2020_30_1_a12 ER -
%0 Journal Article %A Michalak, Marcin %A Jaksik, Roman %A Ślęzak, Dominik %T Heuristic search of exact biclusters in binary data %J International Journal of Applied Mathematics and Computer Science %D 2020 %P 161-171 %V 30 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_1_a12/ %G en %F IJAMCS_2020_30_1_a12
Michalak, Marcin; Jaksik, Roman; Ślęzak, Dominik. Heuristic search of exact biclusters in binary data. International Journal of Applied Mathematics and Computer Science, Tome 30 (2020) no. 1, pp. 161-171. http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_1_a12/
[1] Busygin, S., Prokopyev, O. and Pardalos, P.M. (2008). Biclustering in data mining, Computers Operations Research 35(9): 2964–2987.
[2] Chagoyen, M., Carmona-Saez, P., Shatkay, H., Carazo, J.M. and Pascual-Montano, A. (2006). Discovering semantic features in the literature: A foundation for building functional associations, BMC Bioinformatics 7, Article no. 41.
[3] Cheng, Y. and Church, G. (2000). Biclustering of expression data, Proceedings of the 8th International Conference on Intelligent Systems for Molecular Biology, San Diego, CA, USA, Vol. 8, pp. 93–103.
[4] Gusenleitner, D., Howe, E.A., Bentink, S., Quackenbush, J. and Culhane, A.C. (2012). iBBiG: Iterative binary bi-clustering of gene sets, Bioinformatics 28(19): 2484–2492.
[5] Hartigan, J.A. (1972). Direct clustering of a data matrix, Journal of the American Statistical Association 67(337): 123–129.
[6] Hochreiter, S., Bodenhofer, U., Heusel, M., Mayr, A., Mitterecker, A., Kasim, A., Khamiakova, T., Van Sanden, S., Lin, D., Talloen, W., Bijnens, L., Goehlmann, H.W.H., Shkedy, Z. and Clevert, D.-A. (2010). FABIA: Factor analysis for bicluster acquisition, Bioinformatics 26(12): 1520–1527.
[7] Ignatov, D.I. and Watson, B.W. (2016). Towards a unified taxonomy of biclustering methods, Russian and South African Workshop on Knowledge Discovery Techniques Based on Formal Concept Analysis, Stellenbosch, South Africa, Vol. 1522, pp. 23–39.
[8] Johnson, D. (1974). Approximation algorithms for combinational problems, Journal of Computer and System Sciences 9(3): 256–278.
[9] Kasim, A., Shkedy, Z., Kaiser, S., Hochreiter, S. and Talloen, W. (2016). Applied Biclustering Methods for Big and High Dimensional Data Using R, CRC Press, Taylor Francis Group, New York, NY.
[10] Latkowski, R. (2003). On decomposition for incomplete data, Fundamenta Informaticae 54(1): 1–16.
[11] Michalak, M. and Ślęzak, D. (2018). Boolean representation for exact biclustering, Fundamenta Informaticae 161(3): 275–297.
[12] Michalak, M. and Ślęzak, D. (2019). On Boolean representation of continuous data biclustering, Fundamenta Informaticae 167(3): 193–217.
[13] Murali, T.M. and Kasif, S. (2003). Extracting conserved gene expression motifs from gene expression data, Proceedings of the Pacific Symposium on Biocomputing, Kauai, HI, USA, pp. 77–88.
[14] Orzechowski, P. and Boryczko, K. (2016). Text mining with hybrid biclustering algorithms, Proceedings of the 15th International Conference on Artificial Intelligence and Soft Computing, Zakopane, Poland, pp. 102–113.
[15] Prelić, A., Bleuler, S., Zimmermann, P., Wille, A., Bühlmann, P., Gruissem, W., Hennig, L., Thiele, L. and Zitzler, E. (2006). A systematic comparison and evaluation of biclustering methods for gene expression data, Bioinformatics 22(9): 1122–1129.
[16] Rodriguez-Baena, D.S., Perez-Pulido, A.J. and Aguilar-Ruiz, J.S. (2011). A biclustering algorithm for extracting bit-patterns from binary datasets, Bioinformatics 27(19): 2738–2745.
[17] Serin, A. and Vingron, M. (2011). DeBi: Discovering differentially expressed biclusters using a frequent itemset approach, Algorithms for Molecular Biology 6, Article no. 1.
[18] Tanay, A., Sharan, R. and Shamir, R. (2005). Handbook of Computational Molecular Biology, Chapman Hall/CRC Press, New York, NY.
[19] Yang, J., Wang, H., Wang, W. and Yu, P. (2003). Enhanced biclustering on expression data, Proceedings of the 3rd IEEE Symposium on Bioinformatics and Bioengineering, Bethesda, MD, USA, pp. 321–327.