Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2019_29_4_a3, author = {Kurdyukov, Alexander P. and Boichenko, Victor A.}, title = {A spectral method of the analysis of linear control systems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {667--679}, publisher = {mathdoc}, volume = {29}, number = {4}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_4_a3/} }
TY - JOUR AU - Kurdyukov, Alexander P. AU - Boichenko, Victor A. TI - A spectral method of the analysis of linear control systems JO - International Journal of Applied Mathematics and Computer Science PY - 2019 SP - 667 EP - 679 VL - 29 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_4_a3/ LA - en ID - IJAMCS_2019_29_4_a3 ER -
%0 Journal Article %A Kurdyukov, Alexander P. %A Boichenko, Victor A. %T A spectral method of the analysis of linear control systems %J International Journal of Applied Mathematics and Computer Science %D 2019 %P 667-679 %V 29 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_4_a3/ %G en %F IJAMCS_2019_29_4_a3
Kurdyukov, Alexander P.; Boichenko, Victor A. A spectral method of the analysis of linear control systems. International Journal of Applied Mathematics and Computer Science, Tome 29 (2019) no. 4, pp. 667-679. http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_4_a3/
[1] Belov, A.A. and Andrianova, O.G. (2016). Anisotropy-based suboptimal state-feedback control design using linear matrix inequalities, Automation and Remote Control 77(10): 1741–1755.
[2] Belov, A.A. Andrianova, O.G. and Kurdyukov, A.P. (2018). Control of Discrete-Time Descriptor Systems, Springer, Cham.
[3] Bertsekas, D.P. (2003). Convex Analysis and Optimization, Athena Scientific, Nashua, NH.
[4] Boichenko, V.A. (2017). Anisotropy-based analysis for case of nonzero initial condition, Large-Scale Systems Control (67): 32–51.
[5] Boichenko, V.A. and Belov, A.A. (2017). On stochastic gain of linear systems with nonzero initial condition, 25th Mediterranean Conference on Control and Automation, MED 2017, Valletta, Malta, pp. 817–821.
[6] Boichenko, V.A. and Kurdyukov, A.P. (2016). On lower bound of anisotropic norm, IFAC-PapersOnLine 49(13): 48–52.
[7] Boichenko, V.A. and Kurdyukov, A.P. (2017). On lower bound of anisotropic norm of the linear stochastic system, Automation and Remote Control 78(4): 643–653.
[8] Boyd, S. and Vandenberghe, L. (2004). Convex Optimization, Cambridge University Press, Cambridge.
[9] Cover, T.M. and Thomas, J.A. (1991). Elements of Information Theory, Wiley, New York, NY.
[10] Diamond, P., Vladimirov, I.G., Kurdyukov, A.P. and Semyonov, A.V. (2001). Anisotropy-based performance analysis of linear discrete time invariant control systems, International Journal of Control 74(1): 28–42.
[11] Gantmacher, F.R. (2000). The Theory of Matrices, AMS, Providence, RI.
[12] Iglesias, P.A. and Mustafa, D. (1993). State-space solution of the discrete-time minimum entropy control problem via separation, IEEE Transactions on Automatic Control 38(10): 1525–1530
[13] Iglesias, P.A., Mustafa, D. and Glover, K. (1990). Discrete-time H∞ controllers satisfying a minimum entropy criterion, Systems Control Letters 14(4): 275–286.
[14] Kurdyukov, A.P. Kustov, A. Yu. Tchaikovsky, M.M. and Karny, M. (2013). The concept of mean anisotropy of signals with nonzero mean, 19th International Conference on Process Control, Štrbské Pleso, Slovakia, pp. 37–41.
[15] Kurdyukov, A.P. and Maximov, E.A. (2005). State-space solution to stochastic H∞-optimization problem with uncertainty, 16th IFAC World Congress, Prague, Czech Republic, pp. 429–434.
[16] Kurdyukov, A.P., Maximov, E.A. and Tchaikovsky, M.M. (2006). Homotopy method for solving anisotropy-based stochastic H∞-optimization problem with uncertainty, 5th IFAC Symposium on Robust Control Design, Toulouse, France, pp. 327–332.
[17] Kustov, A. Yu. (2014). Anisotropy-based analysis and synthesis problems for input disturbances with nonzero mean, 15th International Carpathian Control Conference, ICCC-2014, Velké Karlovice, Czech Republic, pp. 291–295.
[18] Kustov, A. Yu., Kurdyukov, A.P. and Yurchenkov, A.V. (2016). On the anisotropy-based bounded real lemma formulation for the systems with disturbance-term multiplicative noise, IFAC-PapersOnLine 49(13): 65–69.
[19] Kwakernaak, H. and Sivan, R. (1972). Linear Optimal Control Systems, Wiley, New York, NY.
[20] Mustafa, D. and Glover, K. (1990). Minimum Entropy H∞ Control, Springer, Berlin/Heidelberg.
[21] Poznyak, A.S. (2008). Advanced Mathematical Tools for Automatic Control Engineers, Vol. 1: Deterministic Techniques, Elsevier, Amsterdam.
[22] Rockafellar, R.T. (1970). Convex Analysis, Princeton University Press, Princeton.
[23] Semyonov, A.V., Vladimirov, I.G. and Kurdyukov, A.P. (1994). Stochastic approach to H∞-optimization, 33rd IEEE Conference on Decision and Control, Lake Buena Vista, FL, USA, pp. 2249–2250.
[24] Tchaikovsky, M.M. and Timin, V.N. (2017). Synthesis of anisotropic suboptimal control for linear time-varying systems on finite time horizon, Automation and Remote Control 78(7): 1203–1217.
[25] Timin, V.N. and Kurdyukov, A.P. (2015). Anisotropy-based multicriteria time-varying filtering on finite horizon, Doklady Mathematics 92(2): 638–642.
[26] Timin, V.N. and Kurdyukov, A.P. (2016). Suboptimal anisotropic filtering in a finite horizon, Automation and Remote Control 77(1): 1–20.
[27] Vladimirov, I.G., Kurdyukov, A.P., Maksimov, E.A. and Timin, V.N. (2005). Anisotropy-based control theory—the new approach to stochastic robust control theory, 4th International Conference on System Identification and Control Problems, SICPRO‘05, Moscow, Russia, pp. 29–94.
[28] Yurchenkov, A.V., Kustov, A. Yu. and Kurdyukov, A.P. (2016). Anisotropy-based bounded real lemma for discrete-time systems with multiplicative noise, Doklady Mathematics 93(2): 1–3.
[29] Zhou, K., Doyle, J.C. and Glover, K. (1996). Robust and Optimal Control, Prentice Hall, Englewood Cliffs, NJ.
[30] Zhou, K., Glover, K., Bodenheimer, B. and Doyle, J. (1994). Mixed H2 and H∞ performance objectives. I: Robust performance analysis, IEEE Transactions on Automatic Control 39(8): 1564–1574.