Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2019_29_4_a11, author = {Janicka, Ma{\l}gorzata and Lango, Mateusz and Stefanowski, Jerzy}, title = {Using information on class interrelations to improve classification of multiclass imbalanced data: {A} new resampling algorithm}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {769--781}, publisher = {mathdoc}, volume = {29}, number = {4}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_4_a11/} }
TY - JOUR AU - Janicka, Małgorzata AU - Lango, Mateusz AU - Stefanowski, Jerzy TI - Using information on class interrelations to improve classification of multiclass imbalanced data: A new resampling algorithm JO - International Journal of Applied Mathematics and Computer Science PY - 2019 SP - 769 EP - 781 VL - 29 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_4_a11/ LA - en ID - IJAMCS_2019_29_4_a11 ER -
%0 Journal Article %A Janicka, Małgorzata %A Lango, Mateusz %A Stefanowski, Jerzy %T Using information on class interrelations to improve classification of multiclass imbalanced data: A new resampling algorithm %J International Journal of Applied Mathematics and Computer Science %D 2019 %P 769-781 %V 29 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_4_a11/ %G en %F IJAMCS_2019_29_4_a11
Janicka, Małgorzata; Lango, Mateusz; Stefanowski, Jerzy. Using information on class interrelations to improve classification of multiclass imbalanced data: A new resampling algorithm. International Journal of Applied Mathematics and Computer Science, Tome 29 (2019) no. 4, pp. 769-781. http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_4_a11/
[1] Abdi, L. and Hashemi, S. (2016). To combat multi-class imbalanced problems by means of over-sampling techniques, IEEE Transactions on Knowledge and Data Engineering 28(1): 238–251.
[2] Agrawal, A., Herna, L.V. and Paquet, E. (2015). SCUT: Multi-class imbalanced data classification using SMOTE and cluster-based undersampling, International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K), Lisbon, Portugal, Vol. 01, pp. 226–234.
[3] Błaszczyński, J. and Stefanowski, J. (2015). Neighbourhood sampling in bagging for imbalanced data, Neurocomputing 150(Part B): 184–203.
[4] Fernandez, A., Lopez, V., Galar, M., Jesus, M. and Herrera, F. (2013). Analysing the classification of imbalanced data sets with multiple classes, binarization techniques and ad-hoc approaches, Knowledge-Based Systems 42: 97–110.
[5] Fernández, A., Garca, S., Galar, M., Prati, R., Krawczyk, B. and Herrera, H. (2018). Learning from Imbalanced Data Sets, Springer, Cham.
[6] Fernandez-Navarro, F., Hervás-Martínez, C. and Gutiérrez, P. A. (2011). A dynamic over-sampling procedure based on sensitivity for multi-class problems, Pattern Recognition 44(8): 1821–1833.
[7] Galar, M., Fernndez, A., Barrenechea, E., Bustince, H. and Herrera, F.A. (2011). An overview of ensemble methods for binary classifiers in multi-class problems: Experimental study on one-vs-one and one-vs-all schemes, Pattern Recognition 44(8): 1761–1776.
[8] Garcia, V., Sanchez, J.S. and Mollineda, R.A. (2007). An empirical study of the behaviour of classifiers on imbalanced and overlapped data sets, in L. Rueda et al. (Eds), Progress in Pattern Recognition, Image Analysis and Applications, Lecture Notes on Computer Science, Vol. 4756, Springer, Berlin, pp. 397–406.
[9] He, H. and Ma, Y. (2013). Imbalanced Learning: Foundations, Algorithms, and Applications, Wiley, New York, NY.
[10] Jo, T. and Japkowicz, N. (2004). Class imbalances versus small disjuncts, ACM SIGKDD Explorations Newsletter 6(1): 40–49.
[11] Krawczyk, B. (2016). Learning from imbalanced data: Open challenges and future directions, Progress Artificial Intelligence 5(4): 221–232.
[12] Lango, M. (2019). Tackling the problem of class imbalance in multi-class sentiment classification: An experimental study, Foundations of Computing and Decision Sciences 44(2): 151–178.
[13] Lango, M., Napierala, K. and Stefanowski, J. (2017). Evaluating difficulty of multi-class imbalanced data, 23rd International Symposium ISMIS, Warsaw, Poland, pp. 312–322.
[14] Lango, M. and Stefanowski, J. (2018). Multi-class and feature selection extensions of roughly balanced bagging for imbalanced data, Journal of Intelligent Information Systems 50(1): 97–127.
[15] Laurikkala, J. (2001). Improving identification of difficult small classes by balancing class distribution, Technical Report A-2001-2, University of Tampere, Tampere.
[16] Lopez, V., Fernandez, A., Garcia, S., Palade, V. and Herrera, F. (2014). An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics, Information Sciences 257: 113–141.
[17] Napierala, K. and Stefanowski, J. (2012). The influence of minority class distribution on learning from imbalance data, Proceedings of the 7th Conference HAIS 2012, Salamanca, Spain, pp. 139–150.
[18] Napierala, K. and Stefanowski, J. (2016). Types of minority class examples and their influence on learning classifiers from imbalanced data, Journal of Intelligent Information Systems 46(3): 563–597.
[19] Napierala, K., Stefanowski, J. and Wilk, S. (2010). Learning from imbalanced data in presence of noisy and borderline examples, in M. Szczuka et al. (Eds), Proceedings of the 7th International Conference RSCTC 2010, Lecture Notes on Artificial Intelligence, Vol. 6086, Springer, Berlin, pp. 158–167.
[20] Prati, R., Batista, G. and Monard, M. (2004). Class imbalance versus class overlapping: An analysis of a learning system behavior, in R. Monroy et al. (Eds), Advances in Artificial Intelligence, MICAI 2004, Lecture Notes in Computer Science, Vol. 2972, Springer, Berlin/Heidelberg, pp. 312–321.
[21] Seaz, J., Krawczyk, B. and Wozniak, M. (2016). Analyzing the oversampling of different classes and types in multi-class imbalanced data, Pattern Recognition 57: 164–178.
[22] Stefanowski, J. (2013). Overlapping, rare examples and class decomposition in learning classifiers from imbalanced data, in S. Ramanna et al. (Eds), Emerging Paradigms in Machine Learning, Smart Innovation, Systems and Technologies, Vol. 13, Springer, Berlin/Heidelberg, pp. 277–306.
[23] Stefanowski, J. (2016). Dealing with data difficulty factors while learning from imbalanced data, in J. Mielniczuk (Eds), Challenges in Computational Statistics and Data Mining, Studies in Computational Intelligence, Vol. 605, Springer, Cham, pp. 333–363.
[24] Stefanowski, J., Krawiec, K. and Wrembel, R. (2017). Exploring complex and big data, International Journal of Applied Mathematics and Computer Science 27(4): 669–679, DOI: 10.1515/amcs-2017-0046.
[25] Wang, S. and Yao, X. (2012). Mutliclass imbalance problems: Analysis and and potential solutions, IEEE Transactions Systems, Man and Cybernetics, B 42(4): 1119–1130.
[26] Wojciechowski, S., Wilk, S. and Stefanowski, J. (2017). An algorithm for selective preprocessing of multi-class imbalanced data, International Conference on Computer Recognition Systems, CORES 2017, Polanica Zdrój, Poland, pp. 238–247.
[27] Zhou, Z.H. and Liu, X.Y. (2010). On multi-class cost sensitive learning, Computational Intelligence 26(3): 232–257.