Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2019_29_4_a10, author = {Hedjar, Ramdane and Bounkhel, Messaoud}, title = {An automatic collision avoidance algorithm for multiple marine surface vehicles}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {759--768}, publisher = {mathdoc}, volume = {29}, number = {4}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_4_a10/} }
TY - JOUR AU - Hedjar, Ramdane AU - Bounkhel, Messaoud TI - An automatic collision avoidance algorithm for multiple marine surface vehicles JO - International Journal of Applied Mathematics and Computer Science PY - 2019 SP - 759 EP - 768 VL - 29 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_4_a10/ LA - en ID - IJAMCS_2019_29_4_a10 ER -
%0 Journal Article %A Hedjar, Ramdane %A Bounkhel, Messaoud %T An automatic collision avoidance algorithm for multiple marine surface vehicles %J International Journal of Applied Mathematics and Computer Science %D 2019 %P 759-768 %V 29 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_4_a10/ %G en %F IJAMCS_2019_29_4_a10
Hedjar, Ramdane; Bounkhel, Messaoud. An automatic collision avoidance algorithm for multiple marine surface vehicles. International Journal of Applied Mathematics and Computer Science, Tome 29 (2019) no. 4, pp. 759-768. http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_4_a10/
[1] Benjamin, M. Curcio, J. and Newman, P. (2006). Navigation of unmanned marine vehicles in accordance with the rules of the road, Proceedings of the IEEE International Conference on Robotics and Automation, Orlando, FL, USA, Vol. 70, pp. 3581–3587.
[2] Campbell, S. Naeem, W. and Irwin, G.W. (2002). A review on improving the autonomy of unmanned surface vehicles through intelligent collision avoidance maneuvers, Annual Reviews in Control 36(2): 267–283.
[3] Erol, S. Demir, M.E.B. and Eyüboğlu, E. (2018). Analysis of ship accidents in the Istanbul strait using neuro-fuzzy and genetically optimized fuzzy classifiers, The Journal of Navigation 71(2): 419–436.
[4] Fossen, T.I. and Johansen, T.A. (2006). A survey of control allocation methods for ships and underwater vehicles, Proceedings of the 14th Mediterranean Conference on Control and Automation, Ancona, Italy, pp. 1–6.
[5] Fossen, T.L. (1994). Guidance and Control of Ocean Vehicles, Wiley, New York, NY.
[6] Isidori, A. (1989). Nonlinear Control Systems, Springer, London.
[7] Johansen, T.A. and Fossen, T. (2013). Control allocation: A survey, Automatica 49(5): 1087–1103.
[8] Kim, D. Hirayama, K. and Okimoto, T. (2017). Distributed stochastic search algorithm for multi-ship encounter situations, The Journal of Navigation 70(4): 699–718.
[9] Kuwata, Y., Wolf, M.T.Z.D. and Huntsberger, T.L. (2014). Safe maritime autonomous navigation with COLREGS using velocity obstacles, IEEE Journal of Oceanic Engineering 39(1): 110–119.
[10] Kvasov, D.E. and Mukhametzhanov, M. (2018). Metaheuristic vs. deterministic global optimization algorithms: The univariate case, Applied Mathematics and Computation 318(1): 245–259.
[11] Lazarowska, A. (2015). Ships trajectory planning for collision avoidance at sea based on ant colony optimization, The Journal of Navigation 68(2): 291–307.
[12] Liu, Y.H. and Shi, C.J. (2005). A fuzzy-neural inference network for ship collision avoidance, Proceedings of the International Conference on Machine Learning and Cybernetics, Guangzhou, China, pp. 4754–4759.
[13] Mattingley, J. and Boyd, S. (2010). Real-time convex optimization in signal processing: Recent advances that make it easier to design and implement algorithms, IEEE Signal Processing Magazine 27(3): 35–49.
[14] Perera, L.P. Carvalho, J.P. and Soares, C.G. (2011). Fuzzy logic based decision-making system for collision avoidance of ocean navigation under critical collision conditions, Journal of Marine Science and Technology 6(1): 84–99.
[15] Skjetne, R. Fossen, T.I. and Kokotovic, P.V. (2005). Adaptive maneuvering, with experiments, for a model ship in marine control laboratory, Automatica 41(2): 289–298.
[16] Statheros, T. Howells, G. and Maier, K.M. (2008). Autonomous ship collision avoidance navigation concepts, technologies and techniques, The Journal of Navigation 61(1): 129–142.
[17] Wang, T. F. Yan, X.P. and Wang, Y. (2017). Ship domain model for multi-ship collision avoidance decision making with colregs based on artificial potential field, International Journal on Maritime Navigation and Safety of Sea Transportation 11(1): 85–92.
[18] Xu, Q. Zhang, C. and Wang, N. (2014). Multi-objective optimization based vessel collision avoidance strategy optimization, Mathematical Problems in Engineering 2014: 1–9.
[19] Zhang, L. Lin, S., Zhou, J. and Papavassiliou, C. (2017). Three-dimensional underwater path planning based on modified wolf pack algorithm, IEEE Access 5: 22783–22795.