Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2019_29_4_a0, author = {Selek, Istv\'an and Ikonen, Enso}, title = {Fundamental limitations of the decay of generalized energy in controlled (discrete-time) nonlinear systems subject to state and input constraints}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {629--639}, publisher = {mathdoc}, volume = {29}, number = {4}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_4_a0/} }
TY - JOUR AU - Selek, István AU - Ikonen, Enso TI - Fundamental limitations of the decay of generalized energy in controlled (discrete-time) nonlinear systems subject to state and input constraints JO - International Journal of Applied Mathematics and Computer Science PY - 2019 SP - 629 EP - 639 VL - 29 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_4_a0/ LA - en ID - IJAMCS_2019_29_4_a0 ER -
%0 Journal Article %A Selek, István %A Ikonen, Enso %T Fundamental limitations of the decay of generalized energy in controlled (discrete-time) nonlinear systems subject to state and input constraints %J International Journal of Applied Mathematics and Computer Science %D 2019 %P 629-639 %V 29 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_4_a0/ %G en %F IJAMCS_2019_29_4_a0
Selek, István; Ikonen, Enso. Fundamental limitations of the decay of generalized energy in controlled (discrete-time) nonlinear systems subject to state and input constraints. International Journal of Applied Mathematics and Computer Science, Tome 29 (2019) no. 4, pp. 629-639. http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_4_a0/
[1] Al’brekht, E.G. (1961). On the optimal stabilization of nonlinear systems, Journal of Applied Mathematics and Mechanics 25(5): 1254–1266.
[2] Aranda-Escolástico, E., Salt, J., Guinaldo, M., Chacón, J. and Dormido, S. (2018). Optimal control for aperiodic dual-rate systems with time-varying delays, Sensors 18(5): 1–19.
[3] Bemporad, A., Torrisit, F.D. and Morarit, M. (2000). Performance analysis of piecewise linear systems and model predictive control systems, IEEE Conference on Decision and Control, Sydney, NSW, Australia, pp. 4957–4962.
[4] Boyd, S., El-Ghaoui, L., Feron, E. and Balakrishnan, V. (1994). Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia, PA.
[5] Buhl, M. and Lohmann, B. (2009). Control with exponentially decaying Lyapunov functions and its use for systems with input saturation, European Control Conference, Budapest, Hungary, pp. 3148–3153.
[6] Darup, M.S. and Mönnigmann, M. (2013). Null-controllable set computation for a class of constrained bilinear systems, European Control Conference, Zürich, Switzerland, pp. 2758–2763.
[7] Duda, J. (2012). A Lyapunov functional for a system with a time-varying delay, International Journal of Applied Mathematics and Computer Science 22(2): 327–337, DOI: 10.2478/v10006-012-0024-7.
[8] Feyzmahdavian, H. R., Charalambous, T. and Johansson, M. (2013). On the rate of convergence of continuous-time linear positive systems with heterogeneous time-varying delays, European Control Conference, Zürich, Switzerland, pp. 3372–3377.
[9] Fu, J. (1993). Families of Lyapunov functions for nonlinear systems in critical cases, IEEE Transactions on Automatic Control 38(1): 3–16.
[10] Grushkovskaya, V. and Zuyev, A. (2014). Optimal stabilization problem with minimax cost in a critical case, IEEE Transactions on Automatic Control 59(9): 2512–2517.
[11] Hu, T., Lin, Z. and Shamash, Y. (2003). On maximizing the convergence rate for linear systems with input saturation, IEEE Transactions on Automatic Control 48(7): 1249–1253.
[12] Kaczorek, T. (2007). The choice of the forms of Lyapunov functions for a positive 2D Roesser model, International Journal of Applied Mathematics and Computer Science 17(4): 471–475, DOI: 10.2478/v10006-007-0039-7.
[13] Lenka, B.K. (2019). Time-varying Lyapunov functions and Lyapunov stability of nonautonomous fractional order systems, International Journal of Applied Mathematics 32(1): 111–130.
[14] Li, W., Huang, C. and Zhai, G. (2018). Quadratic performance analysis of switched affine time-varying systems, International Journal of Applied Mathematics and Computer Science 28(3): 429–440, DOI: 10.2478/amcs-2018-0032.
[15] Polyak, B. and Shcherbakov, P. (2009). Ellipsoidal approximations to attraction domains of linear systems with bounded control, Proceedings of the American Control Conference, St. Louis, MO, USA, pp. 5363–5367.
[16] Prieur, C., Tarbouriech, S. and Zaccarian, L. (2011). Improving the performance of linear systems by adding a hybrid loop, 18th IFAC World Congress, Milan, Italy, pp. 6301–6306.
[17] Scokaert, P. and Rawlings, J.B. (1998). Constrained linear quadratic regulation, IEEE Transactions on Automatic Control 43(8): 1163–1169.
[18] Selek, I. and Ikonen, E. (2018). On the bounds of the fastest admissible decay of generalized energy in controlled LTI systems subject to state and input constraints, 15th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE2018), Mexico City, Mexico, p. ID: 19.