Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2018_28_4_a5, author = {Witkowska, A. and \'Smierzchalski, R.}, title = {Adaptive backstepping tracking control for an over-actuated {DP} marine vessel with inertia uncertainties}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {679--693}, publisher = {mathdoc}, volume = {28}, number = {4}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_4_a5/} }
TY - JOUR AU - Witkowska, A. AU - Śmierzchalski, R. TI - Adaptive backstepping tracking control for an over-actuated DP marine vessel with inertia uncertainties JO - International Journal of Applied Mathematics and Computer Science PY - 2018 SP - 679 EP - 693 VL - 28 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_4_a5/ LA - en ID - IJAMCS_2018_28_4_a5 ER -
%0 Journal Article %A Witkowska, A. %A Śmierzchalski, R. %T Adaptive backstepping tracking control for an over-actuated DP marine vessel with inertia uncertainties %J International Journal of Applied Mathematics and Computer Science %D 2018 %P 679-693 %V 28 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_4_a5/ %G en %F IJAMCS_2018_28_4_a5
Witkowska, A.; Śmierzchalski, R. Adaptive backstepping tracking control for an over-actuated DP marine vessel with inertia uncertainties. International Journal of Applied Mathematics and Computer Science, Tome 28 (2018) no. 4, pp. 679-693. http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_4_a5/
[1] Bańka, S., Dworak, P. and Jaroszewski, K. (2013). Linear adaptive structure for control of a nonlinear MIMO dynamic plant, International Journal of Applied Mathematics and Computer Science 23(1): 47–63, DOI: 10.2478/amcs-2013-0005.
[2] Bodson, M. (2002). Evaluation of optimization methods for control allocation, Journal of Guidance, Control and Dynamics 25(4): 703–711.
[3] Boulkroune, A., Bounar, N., M’Saad, M. and Farza, M. (2014). Indirect adaptive fuzzy control scheme based on observer for nonlinear systems: A novel SPR-filter approach, Neurocomputing 135(C): 378–387, DOI: 10.1016/j.neucom.2013.12.011.
[4] Du, J., Hu, X., Liu, H. and Chen, C.L.P. (2015). Adaptive robust output feedback control for a marine dynamic positioning system based on a high-gain observer, IEEE Transactions on Neural Networks and Learning Systems 26(11): 2775–2786.
[5] El Maguiri, O.E., Giri, F., Dugard, L., Fadil, H.E. and Chaoui, F.Z. (2010). Nonlinear adaptive output feedback control of series resonant dc-dc converters, Proceedings of the American Control Conference, Baltimore, MD, USA, pp. 3287–3292, DOI: 10.1109/ACC.2010.5530481.
[6] Fossen, T.I. (2000). A survey on nonlinear ship control: From theory to practice, Proceedings of the 5th IFAC Conference on Manoeuvring and Control of Marine Craft, Aalborg, Denmark, pp. 1–16.
[7] Fossen, T.I. (2011). Handbook of Marine Craft Hydrodynamics and Motion Control, John Wiley and Sons Ltd, Chichester.
[8] Fossen, T.I., Sagatun, S.I. and Sorensen, A.J. (1996). Identification of dynamically positioning ships, Control Engineering Practice 4(3): 369–376, DOI: 10.1016/0967-0661(96)00014-7.
[9] Fu, M., Xu, Y. and Zhou, L. (2016). Bio-inspired trajectory tracking algorithm for dynamic positioning ship with system uncertainties, Proceedings of the 35th Chinese Control Conference (CCC), Chengdu, China, pp. 4562–4566, DOI:10.1109/ChiCC.2016.7554061.
[10] Godhavn, J.M., Fossen, T.I. and Berge, S.P. (1998). Nonlinear and adaptive backstepping designs for tracking control of ships, International Journal of Adaptive Control and Signal Processing Marine Systems Control 12(8): 649–670.
[11] Hanger, M., Johansen, T.A., Mykland, G.K. and Skullestad, A. (2011). Dynamic model predictive control allocation using CVXGEN, Proceedings of the 9th IEEE International Conference on Control and Automation (ICCA), Santiago, Chile, DOI: 10.1109/ICCA.2011.6137940.
[12] Harkegard, O. (2004). Dynamic control allocation using constrained quadratic programming, Journal of Guidance, Control and Dynamics 27(6): 1028–1034.
[13] Hassani, V., Sorensen, A.J. and Pascoal, A.M. (2012). Robust dynamic positioning of offshore vessels using mixed-μ synthesis. Part II: Simulation and experimental results, IFAC Workshop on Automatic Control in Offshore Oil and Gas Production, Trondheim, Norway, pp. 183–188, DOI: 10.3182/20120531-2-NO-4020.00043.
[14] Johansen, T.A. and Fossen, T.I. (2013). Control allocation—a survey, Automatica 49(5): 1087–1103.
[15] Katebi, M.R., Grimble, M.J. and Zhang, Y. (1997). H/∞ robust control design for dynamic ship positioning, IEE Proceedings: Control Theory and Applications 144(2): 110–120, DOI:10.1049/ip-cta:19971030.
[16] Krstić, M., Kanellakopoulos, I. and Kokotović, P. (1995). Nonlinear and Adaptive Control Design, Wiley, New York, NY.
[17] Lin, X., Xie, Y., Bian, X. and Zhao, D. (2013). Dynamic positioning controller based on unified model in extreme seas, Journal of Computational Information Systems 9(20): 8089–8097.
[18] Lindegaard, K.P. and Fossen, T.I. (2003). Fuel-efficient rudder and propeller control allocation for marine craft: Experiments with a model ship, IEEE Transactions on Control Systems Technology 11(6): 850–862, DOI:10.1109/TCST.2003.815613.
[19] Loria, A., Fossen, T.I. and Panteley, E. (2000). A separation principle for dynamic positioning of ships: Theoretical and experimental results, IEEE Transactions on Control Systems Technology 8(2): 332–343.
[20] Luo, A., Serrani, A., Yurkovich, S., Doman, D.B. and Oppenheimer, M. W. (2004). Model predictive dynamic control allocation with actuator dynamic, Proceedings of the 2004 American Control Conference, Boston, MA, USA, Vol. 2, pp. 1695–1700.
[21] McGookin, E.W., Murray-Smith, D.J., Li, Y. and Fossen, T.I. (2000). Ship steering control system optimisation using genetic algorithms, Control Engineering Practice 8(4): 429–443, DOI: 10.1016/S0967-0661(99)00159-8.
[22] Oppenheimer, M.W., Doman, D.B. and Bolender, M.A. (2006). Control allocation for over-actuated systems, Proceedings of 14th Mediterranean Conference on Control and Automation, Ancona, Italy, pp. 1–6, DOI:10.1109/MED.2006.328750.
[23] Sorensen, A.J. (2011). A survey of dynamic positioning control systems, Annual Reviews in Control 35(1): 123–136.
[24] Swaroop, D., Hedrick, J.K., Yip, P.P. and Gerdes, J.C. (2000). Dynamic surface control for a class of nonlinear systems, IEEE Transactions on Automatic Control 45(10): 1893–1899, DOI: 10.1109/TAC.2000.880994.
[25] Tannuri, E.A., Agostinho, A.C., Morishita, H.M. and Moratelli, L. (2010). Dynamic positioning systems: An experimental analysis of sliding mode control, Control Engineering Practice 18(10): 1121–1132, DOI:10.1016/j.conengprac.2010.06.07.
[26] Tomera, M. (2017). Hybrid switching controller design for the maneuvering and transit of a training ship, International Journal of Applied Mathematics and Computer Science 27(1): 63–77, DOI: 10.1515/amcs-2017-0005.
[27] Tsopelakos, A. and Papadopoulos, E. (2017). Design and evaluation of dynamic positioning controllers with parasitic thrust reduction for an overactuated floating platform, IEEE Transaction on Control Systems and Technology 25(1): 145–160.
[28] Witkowska, A. (2013). Dynamic positioning system with vectorial backstepping controller, Proceedings of the 18th International Conference on Methods and Models in Automation and Robotics (MMAR), Międzyzdroje, Poland, pp. 842–847.
[29] Witkowska, A. and Śmierzchalski, R. (2012). Designing a ship course controller by applying the adaptive backstepping method, International Journal of Applied Mathematics and Computer Science 22(4): 985–997, DOI: 10.2478/v10006-012-0073-y.
[30] Witkowska, A. and Śmierzchalski, R. (2018). Adaptive dynamic control allocation for dynamic positioning of marine vessel based on backstepping method and sequential quadratic programming, Ocean Engineering 163(1): 570–582.
[31] Xia, G., Xue, J., Jiao, J., Wang, H. and Zhou, H. (2016). Adaptive fuzzy control for dynamic positioning ships with time-delay of actuator, Proceedings of the MTS/IEEE International Conference on OCEANS, Monterey, CA, USA, pp. 1–6, DOI:10.1109/OCEANS.2016.7761043.
[32] Zhang, C.-D., Wang, X.-H. and Xiao, J.-M. (2013). Ship dynamic positioning system based on backstepping control, Journal of Theoretical and Applied Information Technology 51(1): 129–136.
[33] Zwierzewicz, Z. (2010). Nonlinear adaptive tracking-control synthesis for functionally uncertain systems, International Journal of Adaptive Control and Signal Processing 24(2): 96–105, DOI: 10.1002/acs.1114.