Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2018_28_4_a1, author = {Kabzi\'nski, J.}, title = {Synchronization of an uncertain {Duffing} oscillator with higher order chaotic systems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {625--634}, publisher = {mathdoc}, volume = {28}, number = {4}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_4_a1/} }
TY - JOUR AU - Kabziński, J. TI - Synchronization of an uncertain Duffing oscillator with higher order chaotic systems JO - International Journal of Applied Mathematics and Computer Science PY - 2018 SP - 625 EP - 634 VL - 28 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_4_a1/ LA - en ID - IJAMCS_2018_28_4_a1 ER -
%0 Journal Article %A Kabziński, J. %T Synchronization of an uncertain Duffing oscillator with higher order chaotic systems %J International Journal of Applied Mathematics and Computer Science %D 2018 %P 625-634 %V 28 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_4_a1/ %G en %F IJAMCS_2018_28_4_a1
Kabziński, J. Synchronization of an uncertain Duffing oscillator with higher order chaotic systems. International Journal of Applied Mathematics and Computer Science, Tome 28 (2018) no. 4, pp. 625-634. http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_4_a1/
[1] Andrievskii, B.R. and Fradkov, A.L. (2004). Control of chaos: Methods and applications. II: Applications, Automation and Remote Control 65(4): 505–533.
[2] Chang, Y., Li, X., Chu, Y. and Han, X. (2009). Synchronization of two physical systems with fully unknown parameters by adaptive control, International Workshop on Chaos-Fractals Theories and Applications, IWCFTA 2009, Shenyang, China, pp. 25–29.
[3] Dong, W., Farrell, J.A., Polycarpou, M.M., Djapic, V. and Sharma, M. (2012). Command filtered adaptive backstepping, IEEE Transactions on Control Systems Technology 20(3): 566–580.
[4] Femat, R. and Solís-Perales, G. (2002). Synchronization of chaotic systems with different order, Physical Review E: Statistical, Nonlinear, and Soft Matter Physics 65(3): 1–7.
[5] Hofmann, U., Janes, J. and Quenzer, H.J. (2012). High-Q MEMS resonators for laser beam scanning displays, Micromachines 3(2): 509–528.
[6] Hua, C. and Guan, X. (2004). Adaptive control for chaotic systems, Chaos, Solitons Fractals 22(1): 55–60.
[7] Hua, C., Guan, X. and Shi, P. (2005). Adaptive feedback control for a class of chaotic systems, Chaos, Solitons Fractals 23(3): 757–765.
[8] Ioannou, P.A. and Sun, J. (1989). Robust Adaptive Control, Dover Publications, Upper Saddle River, NJ.
[9] Kabziński, J. (2010). Adaptive control of Duffing oscillator with unknown input gain, 15th International Conference on Methods and Models in Automation and Robotics, (MMAR), Międzyzdroje, Poland, pp. 2234–2239.
[10] Kabziński, J. (2016). Adaptive tracking control of a Duffing oscillator with hard error constraints, 21st International Conference on Methods and Models in Automation and Robotics (MMAR), Międzyzdroje, Poland, pp. 1176–1181.
[11] Khalil, H.K. (2015). Nonlinear Control, Pearson Education, Upper Saddle River, NJ.
[12] Krstic, M., Kanellakopoulos, I. and Kokotovic, P. (1995). Nonlinear and Adaptive Control Design, Wiley, New York, NY.
[13] LaSalle, J.P. and Lefschetz, S. (1961). Stability by Lyapunov’s Direct Method with Applications, Academic Press, New York, NY.
[14] Pospsil, J., Kolka, Z., Horska, J. and Brzobohaty, J. (2000). Simplest ode equivalents of Chua’s equations, International Journal of Bifurcation and Chaos 10(1): 1–23.
[15] Rhoads, J.F., Shaw, S.W. and Turner, K.L. (2008). Nonlinear dynamics and its applications in microand nanoresonators, Journal of Dynamic Systems, Measurement, and Control 132(3): 1–14.
[16] Sundarapandian, V. (2010). Output regulation of the Arneodo chaotic system, ISRN Applied Mathematics 02(05): 1–11.
[17] Sundarapandian, V. (2011). Anti-synchronization of Arneodo and Coullet chaotic systems by active nonlinear control, International Journal of Control Theory and Applications 4(1): 25–36.
[18] Wang, T., Jia, N. and Zhang, F. (2015). Hybrid projective synchronization of a class of new chaotic systems, Proceedings of the 27th Chinese Control and Decision Conference, CCDC 2015, Qingdao, China, pp. 1278–1283.
[19] Wang, W. and Fan, Y. (2015). Synchronization of Arneodo chaotic system via backstepping fuzzy adaptive control, Optik 126(20): 2679–2683, DOI: 10.1016/j.ijleo.2015.06.071.
[20] Wang, X. and Mortazawi, A. (2016). Bandwidth enhancement of RF resonators using Duffing nonlinear resonance for wireless power applications, IEEE Transactions on Microwave Theory and Techniques 64(11): 3695–3702.
[21] Zhang, H., Liu, D. and Wang, Z. (2009). Controlling Chaos—Supression, Synchronization and Chaotification, Springer Verlag, London.