Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2018_28_3_a7, author = {Li, D. and Zhu, J. and Xu, B. and Lu, M. and Li, M.}, title = {An ant-based filtering random-finite-set approach to simultaneous localization and mapping}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {505--519}, publisher = {mathdoc}, volume = {28}, number = {3}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_3_a7/} }
TY - JOUR AU - Li, D. AU - Zhu, J. AU - Xu, B. AU - Lu, M. AU - Li, M. TI - An ant-based filtering random-finite-set approach to simultaneous localization and mapping JO - International Journal of Applied Mathematics and Computer Science PY - 2018 SP - 505 EP - 519 VL - 28 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_3_a7/ LA - en ID - IJAMCS_2018_28_3_a7 ER -
%0 Journal Article %A Li, D. %A Zhu, J. %A Xu, B. %A Lu, M. %A Li, M. %T An ant-based filtering random-finite-set approach to simultaneous localization and mapping %J International Journal of Applied Mathematics and Computer Science %D 2018 %P 505-519 %V 28 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_3_a7/ %G en %F IJAMCS_2018_28_3_a7
Li, D.; Zhu, J.; Xu, B.; Lu, M.; Li, M. An ant-based filtering random-finite-set approach to simultaneous localization and mapping. International Journal of Applied Mathematics and Computer Science, Tome 28 (2018) no. 3, pp. 505-519. http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_3_a7/
[1] Adams, M., Vo, B., Mahler, R. and Mullane, J. (2014). SLAM gets a PHD: New concepts in map estimation, IEEE Robotics and Automation Magazine 21(2): 26–37.
[2] Aghdam, M., Ghasem-Aghaee, N. and Basiri, M. (2009). Text feature selection using ant colony optimization, Expert Systems with Applications 36(3): 6843–6853.
[3] Bailey, T., Nieto, J., Guivant, J., Stevens, M. and Nebot, E. (2006). Consistency of the EKF-SLAM algorithm, Proceedings of the 2006 IEEE International Conference on Intelligent Robots and Systems, Beijing, China, pp. 3562–3568.
[4] Carlevaris-Bianco, N., Kaess, M. and Eustice, R.M. (2017). Generic node removal for factor-graph SLAM, IEEE Transactions on Robotics 30(6): 1371–1385.
[5] Davison, A., Reid, I., Molton, N. and Stasse, O. (2007). MonoSLAM: Real-time single camera SLAM, IEEE Transactions on Pattern Analysis and Machine Intelligence 29(6): 1052–1067.
[6] Deusch, H., Reuter, S. and Dietmayer, K. (2015). The labeled multi-Bernoulli SLAM filter, IEEE Signal Processing Letters 22(10): 1561–1565.
[7] Dissanayake, G. and Durrant-Whyte, P., Clark, H. and Csorba, M. (2001). A solution to the simultaneous localization and map building (SLAM) problem, IEEE Transactions on Robotic and Automation 17(3): 229–241.
[8] Dorigo, M. and Gambardella, L. (1997). Ant colony system: A cooperative learning approach to the traveling salesman problem, IEEE Transactions on Evolutionary Computation 1(1): 53–66.
[9] Dorigo, M., Maniezzo, V. and Colorni, A. (1995). The ant system: Optimization by a colony of cooperative agents, Physical Review Letters 75(14): 2686–2689.
[10] Huang, H., Huang, C. and Pei, W. (2015). Solving multi-resource constrained project scheduling problem using ant colony optimization, Journal of Engineering Project and Production Management 5(1): 2–12.
[11] Leonard, J.J. and Durrant-Whyte, H.F. (1991). Simultaneous map building and localization for an autonomous mobile robot, Proceedings of the IEEE/RSJ International Workshop on Intelligent Robots and Systems IROS’91, Osaka, Japan, pp. 1142–1147.
[12] Mahler, R. (2007). Statistical Multi-Source Multi-Target Information Fusion, Artech House, Boston, MA.
[13] Michael, M., Sebastian, T., Daphne, K. and Ben, W. (2003). FastSLAM 2.0: An improved particle filtering algorithm for simultaneous localization and mapping that provably converges, Proceedings of the 6th International Joint Conference on Artificial Intelligence, Acapulco, Mexico, pp. 1151–1156.
[14] Montemerlo, M., Thrun, S., Koller, D. and Wegbreit, B. (2002). FastSLAM: A factored solution to the simultaneous localization and mapping problem, Proceedings of the 8th National Conference on Artificial Intelligence, Edmonton, Alberta, Canada, pp. 593–598.
[15] Mullane, J., Vo, B.N., Adams, M.D. and Vo, B.T. (2011). A random-finite-set approach to Bayesian SLAM, IEEE Transactions on Robotics 27(2): 268–282.
[16] Narasimha, K., Kivelevitch, E., Sharma, B. and Kumar, M. (2013). An ant colony optimization technique for solving min-max multi-depot vehicle routing problem, Swarm and Evolutionary Computation 13: 63–73.
[17] Rashno, A., Sadri, S. and Sadeghian Nejad, H. (2015). An efficient content-based image retrieval with ant colony optimization feature selection schema based on wavelet and color features, Proceedings of the 2015 International Symposium on Artificial Intelligence and Signal Processing, Mashhad, Iran, pp. 59–64.
[18] Rodriguez-Losada, D., Matia, F., Pedraza, L., Jimenez, A. and Galan, R. (2007). Consistency of SLAM-EKF algorithms for indoor environments, Journal of Intelligent and Robotic Systems 50(4): 375–397.
[19] Shang, G. (2008). Solving weapon-target assignment problems by a new ant colony algorithm, Proceedings of the 2008 IEEE International Symposium on Computational Intelligence and Design, Wuhan, China, pp. 221–224.
[20] Taketomi, T., Uchiyama, H. and Ikeda, S. (2017). Visual SLAM algorithms: A survey from 2010 to 2016, IPSJ Transactions on Computer Vision Applications 9(1): 16–26.
[21] Thrun, S., Burgard, W. and Fox, D. (2005). Probabilistic Robotics, MIT Press, Cambridge, MA.
[22] Viejo, D., Garcia-Rodriguez, J. and Cazorla, M. (2014). Combining visual features and growing neural gas networks for robotic 3D SLAM, Information Sciences 276: 174–185.
[23] Wang, H., Huang, S., Frese, U. and Dissanayake, G. (2013). The nonlinearity structure of point feature SLAM problems with spherical covariance matrices, Automatica 49(10): 3112–3119.
[24] Wilkowski, A., Kornuta, T., Stefańczyk, M. and Kasprzak, W. (2016). Efficient generation of 3D surfel maps using RGB-D sensors, International Journal of Applied Mathematics and Computer Science 26(1): 99–122, DOI: 10.1515/amcs-2016-0007.
[25] Xu, B., Chen, Q., Zhu, J. and Wang, Z. (2010). Ant estimator with application to target tracking, Signal Processing 90(5): 1496–1509.
[26] Xu, B., Xu, H. and Zhu, J. (2011). Ant clustering PHD filter for multiple-target tracking, Applied Soft Computing 11(1): 1074–1086.
[27] Zhang, H. (2015). Ant colony optimization for multimode resource-constrained project scheduling, Journal of Management in Engineering 28(2): 150–159.
[28] Zhang, Z., Gao, C., Lu, Y., Liu, Y. and Liang, M. (2016). Multi-objective ant colony optimization based on the Physarum-inspired mathematical model for bi-objective traveling salesman problems, PloS ONE 11(1): e0146709.
[29] Zhu, J., Xu, B., Wang, F. and Wang, Z. (2010). A real-time moving ant estimator for bearings-only tracking, Proceedings of the 1st International Conference on Advances in Swarm Intelligence, Beijing, China, pp. 273–280.