Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2018_28_3_a6, author = {Jafarzadeh, H. and Fleming, C. H.}, title = {An exact geometry-based algorithm for path planning}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {493--504}, publisher = {mathdoc}, volume = {28}, number = {3}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_3_a6/} }
TY - JOUR AU - Jafarzadeh, H. AU - Fleming, C. H. TI - An exact geometry-based algorithm for path planning JO - International Journal of Applied Mathematics and Computer Science PY - 2018 SP - 493 EP - 504 VL - 28 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_3_a6/ LA - en ID - IJAMCS_2018_28_3_a6 ER -
%0 Journal Article %A Jafarzadeh, H. %A Fleming, C. H. %T An exact geometry-based algorithm for path planning %J International Journal of Applied Mathematics and Computer Science %D 2018 %P 493-504 %V 28 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_3_a6/ %G en %F IJAMCS_2018_28_3_a6
Jafarzadeh, H.; Fleming, C. H. An exact geometry-based algorithm for path planning. International Journal of Applied Mathematics and Computer Science, Tome 28 (2018) no. 3, pp. 493-504. http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_3_a6/
[1] Akbaripour, H. and Masehian, E. (2017). Semi-lazy probabilistic roadmap: A parameter-tuned, resilient and robust path planning method for manipulator robots, International Journal of Advanced Manufacturing Technology 89(5–8): 1401–1430.
[2] Asano, T., Asano, T., Guibas, L., Hershberger, J. and Imai, H. (1986). Visibility of disjoint polygons, Algorithmica 1(1): 49–63.
[3] Bohlin, R. and Kavraki, L.E. (2000). Path planning using lazy PRM, Proceedings of the IEEE International Conference on Robotics and Automation, ICRA’00, San Francisco, CA, USA, Vol. 1, pp. 521–528.
[4] Choset, H.M. (2005). Principles of Robot Motion: Theory, Algorithms, and Implementation, MIT Press, Cambridge, MA.
[5] Coello, C.A.C., Pulido, G.T. and Lechuga, M.S. (2004). Handling multiple objectives with particle swarm optimization, IEEE Transactions on Evolutionary Computation 8(3): 256–279.
[6] Coello, C.C., Lamont, G.B. and Van Veldhuizen, D.A. (2007). Evolutionary Algorithms for Solving Multi-Objective Problems, Springer, New York, NY.
[7] Cormen, T.H. (2001). Introduction to Algorithms, MIT Press, Cambridge, MA, pp. 595–601.
[8] Davoodi,M., Panahi, F., Mohades, A. and Hashemi, S.N. (2015). Clear and smooth path planning, Applied Soft Computing 32: 568–579.
[9] De Berg, M., Cheong, O., Van Kreveld, M. and Overmars, M. (2008). Computational Geometry: Algorithms and Applications, Springer-Verlag TELOS, Santa Clara, CA.
[10] Deb, K. (2001). Multi-Objective Optimization Using Evolutionary Algorithms, Wiley, New York, NY.
[11] Edelsbrunner, H., Guibas, L.J. and Stolfi, J. (1986). Optimal point location in a monotone subdivision, SIAM Journal on Computing 15(2): 317–340.
[12] Ge, S.S. and Cui, Y.J. (2000). New potential functions for mobile robot path planning, IEEE Transactions on Robotics and Automation 16(5): 615–620.
[13] Ghosh, S.K. and Mount, D.M. (1991). An output-sensitive algorithm for computing visibility graphs, SIAM Journal on Computing 20(5): 888–910.
[14] Jafarzadeh, H., Gholami, S. and Bashirzadeh, R. (2014). A new effective algorithm for on-line robot motion planning, Decision Science Letters 3(1): 121–130.
[15] Jafarzadeh, H., Moradinasab, N. and Elyasi, M. (2017). An enhanced genetic algorithm for the generalized traveling salesman problem, Engineering, Technology Applied Science Research 7(6): 2260–2265.
[16] Kala, R. (2014a). Code for robot path planning using probabilistic roadmap, Indian Institute of Information Technology, Allahabad, http://rkala.in/codes.php.
[17] Kala, R. (2014b). Code for robot path planning using rapidly-exploring random trees, Indian Institute of Information Technology, Allahabad, http://rkala.in/codes.php.
[18] Kavraki, L.E., Kolountzakis, M.N. and Latombe, J.-C. (1998). Analysis of probabilistic roadmaps for path planning, IEEE Transactions on Robotics and Automation 14(1): 166–171.
[19] Klaučo, M., Blažek, S. and Kvasnica, M. (2016). An optimal path planning problem for heterogeneous multi-vehicle systems, International Journal of Applied Mathematics and Computer Science 26(2): 297–308, DOI: 10.1515/amcs-2016-0021.
[20] Latombe, J.-C. (2012). Robot Motion Planning, Springer, New York, NY.
[21] LaValle, S.M. (1998). Rapidly-Exploring Random Trees: A New Tool for Path Planning, Iowa State University, Ames, IA.
[22] Liu, J., Yang, J., Liu, H., Tian, X. and Gao, M. (2017). An improved ant colony algorithm for robot path planning, Soft Computing 21(19): 5829–5839.
[23] Lozano-Pérez, T. and Wesley, M.A. (1979). An algorithm for planning collision-free paths among polyhedral obstacles, Communications of the ACM 22(10): 560–570.
[24] Mac, T.T., Copot, C., Tran, D.T. and De Keyser, R. (2016). Heuristic approaches in robot path planning: A survey, Robotics and Autonomous Systems 86: 13–28.
[25] Masehian, E. and Sedighizadeh, D. (2007). Classic and heuristic approaches in robot motion planning—a chronological review, World Academy of Science, Engineering and Technology 23(5): 101–106.
[26] Mohanta, J.C., Parhi, D.R. and Patel, S.K. (2011). Path planning strategy for autonomous mobile robot navigation using Petri-GA optimisation, Computers Electrical Engineering 37(6): 1058–1070.
[27] Ni, J., Wu, L., Shi, P. and Yang, S. X. (2017). A dynamic bioinspired neural network based real-time path planning method for autonomous underwater vehicles, Computational Intelligence and Neuroscience 2017, Article ID: 9269742.
[28] Purcaru, C., Precup, R.-E., Iercan, D., Fedorovici, L.-O. and David, R.-C. (2013). Hybrid PSO-GSA robot path planning algorithm in static environments with danger zones, Proceedings of the 17th International Conference System Theory, Control and Computing (ICSTCC), Sinaia, Romania, pp. 434–439.
[29] Qureshi, A.H. and Ayaz, Y. (2015). Intelligent bidirectional rapidly-exploring random trees for optimal motion planning in complex cluttered environments, Robotics and Autonomous Systems 68(6): 1–11.
[30] Rohnert, H. (1986). Shortest paths in the plane with convex polygonal obstacles, Information Processing Letters 23(2): 71–76.
[31] Suzuki, Y., Thompson, S. and Kagami, S. (2009). Smooth path planning with pedestrian avoidance for wheeled robots: Implementation and evaluation, 4th International Conference on Autonomous Robots and Agents, ICARA 2009, Wellington, New Zealand, pp. 657–662.
[32] Tang, S., Khaksar, W., Ismail, N. and Ariffin, M. (2012). A review on robot motion planning approaches, Pertanika Journal of Science and Technology 20(1): 15–29.
[33] Urmson, C. and Simmons, R. (2003). Approaches for heuristically biasing RRT growth, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), Las Vegas, NV, USA, Vol. 2, pp. 1178–1183.
[34] Welzl, E. (1985). Constructing the visibility graph for n-line segments in O(n2) time, Information Processing Letters 20(4): 167–171.
[35] Zhang, Y., Gong, D.-W. and Zhang, J.-H. (2013). Robot path planning in uncertain environment using multi-objective particle swarm optimization, Neurocomputing 103: 172–185.
[36] Zitzler, E., Laumanns, M. and Thiele, L. (2001). SPEA2: Improving the strength Pareto evolutionary algorithm, Working paper, ETH Zürich, Zürich.