Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2018_28_3_a2, author = {Kaczorek, T.}, title = {Stability of interval positive fractional discrete-time linear systems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {451--456}, publisher = {mathdoc}, volume = {28}, number = {3}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_3_a2/} }
TY - JOUR AU - Kaczorek, T. TI - Stability of interval positive fractional discrete-time linear systems JO - International Journal of Applied Mathematics and Computer Science PY - 2018 SP - 451 EP - 456 VL - 28 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_3_a2/ LA - en ID - IJAMCS_2018_28_3_a2 ER -
%0 Journal Article %A Kaczorek, T. %T Stability of interval positive fractional discrete-time linear systems %J International Journal of Applied Mathematics and Computer Science %D 2018 %P 451-456 %V 28 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_3_a2/ %G en %F IJAMCS_2018_28_3_a2
Kaczorek, T. Stability of interval positive fractional discrete-time linear systems. International Journal of Applied Mathematics and Computer Science, Tome 28 (2018) no. 3, pp. 451-456. http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_3_a2/
[1] Berman, A. and Plemmons R.J. (1994). Nonnegative Matrices in the Mathematical Sciences, SIAM, Philadelphia, PA.
[2] Busłowicz, M. (2008). Stability of linear continuous-time fractional order systems with delays of the retarded type, Bulletin of the Polish Academy of Sciences: Technical Sciences 56(4): 319–324.
[3] Busłowicz, M. (2012). Stability analysis of continuous-time linear systems consisting of n subsystems with different fractional orders, Bulletin of the Polish Academy of Sciences: Technical Sciences 60(2): 279–284.
[4] Busłowicz, M. and Kaczorek, T. (2009). Simple conditions for practical stability of positive fractional discrete-time linear systems, International Journal of Applied Mathematics and Computer Science 19(2): 263–269, DOI: 10.2478/v10006-009-0022-6.
[5] Farina, L. and Rinaldi, S. (2000). Positive Linear Systems: Theory and Applications, Wiley, New York, NY.
[6] Kaczorek, T. (1997). Positive singular discrete-time linear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 45(4): 619–631.
[7] Kaczorek, T. (2002). Positive 1D and 2D Systems, Springer, London.
[8] Kaczorek, T. (2008). Fractional positive continuous-time linear systems and their reachability, International Journal of Applied Mathematics and Computer Science 18(2): 223–228, DOI: 10.2478/v10006-008-0020-0.
[9] Kaczorek, T. (2010). Positive linear systems with different fractional orders, Bulletin of the Polish Academy of Sciences: Technical Sciences 58(3): 453–458.
[10] Kaczorek, T. (2011). Positive linear systems consisting of n subsystems with different fractional orders, IEEE Transactions on Circuits and Systems 58(7): 1203–1210.
[11] Kaczorek, T. (2012a). Selected Problems of Fractional Systems Theory, Springer, Berlin.
[12] Kaczorek, T. (2012b). Positive fractional continuous-time linear systems with singular pencils, Bulletin of the Polish Academy of Sciences: Technical Sciences 60(1): 9–12.
[13] Kaczorek, T. (2013). Application of the Drazin inverse to the analysis of descriptor fractional discrete-time linear systems with regular pencils, International Journal of Applied Mathematics and Computer Science 23(1): 29–33, DOI: 10.2478/amcs-2013-0003.
[14] Kaczorek, T. (2014). Descriptor positive discrete-time and continuous-time nonlinear systems, in R.S. Romaniuk (Ed.), Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments, Proceedings of SPIE, Vol. 9290, SPIE, Cardiff, pp. 1–11.
[15] Kaczorek, T. (2015a). Positivity and stability of discrete-time nonlinear systems, IEEE 2nd International Conference on Cybernetics, Gdynia, Poland, pp. 156–159.
[16] Kaczorek, T. (2015b). Analysis of positivity and stability of discrete-time and continuous-time nonlinear systems, Computational Problems of Electrical Engineering 5(1): 11–16.
[17] Kaczorek, T. (2015c). Stability of fractional positive nonlinear systems, Archives of Control Sciences 25(4): 491–496.
[18] Kaczorek, T. (2016). Analysis of positivity and stability of fractional discrete-time nonlinear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 64(3): 491–494.
[19] Kaczorek, T. (2018a). Positivity and stability of standard and fractional descriptor continuous-time linear and nonlinear systems, International Journal of Nonlinear Sciences and Numerical Simulation, (in press).
[20] Kaczorek, T. (2018b). Stability of interval positive continuous-time linear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 66(1): 31–35.
[21] Kaczorek, T. and Rogowski, K. (2015). Fractional Linear Systems and Electrical Circuits, Springer, Cham.
[22] Kharitonov, V.L. (1978). Asymptotic stability of an equilibrium position of a family of systems of differential equations, Differentsial’nye uravneniya 14(11): 2086–2088.
[23] Ortigueira, M. D. (2011). Fractional Calculus for Scientists and Engineers, Springer, Dordrecht.
[24] Oldham, K.B. and Spanier, J. (1974). The Fractional Calculus, Academic Press, New York, NY.
[25] Ostalczyk, P. (2008). Epitome of the Fractional Calculus: Theory and Its Applications in Automatics, Publishing House of the Łódź University of Technology, Łódź, (in Polish).
[26] Ostalczyk, P. (2016). Discrete Fractional Calculus, World Scientific, River Edge, NJ.
[27] Podlubny, I. (1999). Fractional Differential Equations, Academic Press, San Diego, CA.
[28] Radwan, A.G., Soliman, A.M., Elwakil, A.S. and Sedeek A. (2009). On the stability of linear systems with fractional-order elements. Chaos, Solitones and Fractals 40(5): 2317–2328.
[29] Sajewski, Ł (2016a). Descriptor fractional discrete-time linear system and its solution—comparison of three different methods, in R. Szewczyk et al. (Eds.), Challenges in Automation, Robotics and Measurement Techniques, Springer, Cham, pp. 37–50.
[30] Sajewski, Ł. (2016b). Descriptor fractional discrete-time linear system with two different fractional orders and its solution, Bulletin of the Polish Academy of Sciences: Technical Sciences 64(1): 15–20.
[31] Solteiro Pires, E.J., Tenreiro Machado, J.A. and de Moura Oliveira, P.B. (2006). Fractional dynamics in genetic algorithms, IFAC Proceedings Volumes 39(11): 414–419.
[32] Vinagre, B.M., Monje, C.A. and Calderon A.J. (2002). Fractional order systems and fractional order control actions, Proceedings of the Conference on Decision and Control, Las Vegas, NV, USA, pp. 2550–2554.
[33] Xiang-Jun, W., Zheng-Mao, W. and Jun-Guo, L. (2008). Stability analysis of a class of nonlinear fractional-order systems, IEEE Transactions on Circuits and Systems II: Express Briefs 55(11): 1178–1182.