Robust controlled positive delayed systems with interval parameter uncertainties: A delay uniform decomposition approach
International Journal of Applied Mathematics and Computer Science, Tome 28 (2018) no. 3, pp. 441-450.

Voir la notice de l'article provenant de la source Library of Science

This paper is concerned with robust stabilization of continuous linear positive time-delay systems with parametric uncertainties. The delay considered in this work is a bounded time-varying function. Previously, we have demonstrated that the equidistant delay-decomposition technique is less conservative when it is applied to linear positive time-delay systems. Thus, we use simply a delay bi-decomposition in an appropriate Lyapunov–Krasovskii functional. By using classical and partitioned control gains, the state-feedback controllers developed in our work are formulated in terms of linear matrix inequalities. The efficiency of the proposed robust control laws is illustrated with via an example.
Keywords: delay system, robust stabilization, positive system, parametric constraints, delay decomposition, LMIs
Mots-clés : układ z opóźnieniem, stabilizacja odporna, układ dodatni, ograniczenia parametryczne, LMIs
@article{IJAMCS_2018_28_3_a1,
     author = {Elloumi, W. and Mehdi, D. and Chaabane, M.},
     title = {Robust controlled positive delayed systems with interval parameter uncertainties: {A} delay uniform decomposition approach},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {441--450},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_3_a1/}
}
TY  - JOUR
AU  - Elloumi, W.
AU  - Mehdi, D.
AU  - Chaabane, M.
TI  - Robust controlled positive delayed systems with interval parameter uncertainties: A delay uniform decomposition approach
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2018
SP  - 441
EP  - 450
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_3_a1/
LA  - en
ID  - IJAMCS_2018_28_3_a1
ER  - 
%0 Journal Article
%A Elloumi, W.
%A Mehdi, D.
%A Chaabane, M.
%T Robust controlled positive delayed systems with interval parameter uncertainties: A delay uniform decomposition approach
%J International Journal of Applied Mathematics and Computer Science
%D 2018
%P 441-450
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_3_a1/
%G en
%F IJAMCS_2018_28_3_a1
Elloumi, W.; Mehdi, D.; Chaabane, M. Robust controlled positive delayed systems with interval parameter uncertainties: A delay uniform decomposition approach. International Journal of Applied Mathematics and Computer Science, Tome 28 (2018) no. 3, pp. 441-450. http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_3_a1/

[1] Araki, M. (1975). Application of m-matrices to the stability problems of composite dynamical systems, Journal of Mathematical Analysis and Applications 52(2): 309–321.

[2] Bolajraf, M. (2012). Robust Control and Estimation for Positive Systems, Valladolid University, Valladolid.

[3] Chen, X., Chen, M. and Shen, J. (2017). A novel approach to l1-induced controller synthesis for positive systems with interval uncertainties, Journal of The Franklin Institute 354(8): 3364–3377.

[4] Elloumi, W., Mehdi, D., Chaabane, M. and Hashim, G. (2015). Exponential stability criteria for positive systems with time-varying delay: A delay decomposition technique, Circuits, Systems and Signal Processing 35(5): 1545–1561.

[5] Farina, L. and Rinaldi, S. (2000). Positive Linear Systems: Theory and Applications, Wiley, New York, NY.

[6] Hale, J. and Lunel, S.M.V. (1993). Introduction to Functional Differential Equations, Springer, New York, NY.

[7] Hmamed, A., Rami, M.A., Benzaouia, A. and Tadeo, F. (2012). Stabilization under constrained states and controls of positive systems with time delays, Mechanical Systems and Signal Processing 18(2): 182–190.

[8] Junfeng, Z., Xianglei, J., Ridong, Z. and Shizhou, F. (2017). Parameter-dependent Lyapunov function based model predictive control for positive systems and its application in urban water management, Control Conference (CCC), Dalian, China.

[9] Kaczorek, T. (2014). Minimum energy control of fractional positive continuous-time linear systems with bounded inputs, International Journal of Applied Mathematics and Computer Science 24(2): 335–340, DOI: 10.2478/amcs-2014-0025.

[10] Kaczorek, T. (2016). Positivity and stability of fractional descriptor time-varying discrete-time linear systems, International Journal of Applied Mathematics and Computer Science 26(1): 5–13, DOI: 10.1515/amcs-2016-0001.

[11] Luenberger, D.G. (1976). Introduction to Dynamic Systems: Theory, Models and Applications, Academic Press, New York, NY.

[12] Mesquine, F., Hmamed, A., Benhayoun, M., Benzaouiaa, A. and Tadeo, F. (2015). Robust stabilization of constrained uncertain continuous-time fractional positive systems, Journal of The Franklin Institute 352(1): 259–270.

[13] Rami, M.A. (2011). Solvability of static output-feedback stabilization for LTI positive systems, Systems Control Letters 60(9): 704–708.

[14] Rami, M.A., Tadeo, F. and Benzaouia, A. (2007). Control of constrained positive discrete systems, Proceedings of the American Control Conference, New York, NY, USA, pp. 5851–5856.

[15] Shorten, R., Wirth, F. and Leith, D. (2006). A positive systems model of TCP-like congestion control: Asymptotic results, IEEE Transactions on Networking 14(2): 616–629.

[16] Shuqian, Z., Han, Q.-L. and Zhang, C. (2014). l1-gain performance analysis and positive filter design for positive discrete-time Markov jump linear systems: A linear programming approach, Automatica 50(8): 2098–2107.

[17] Zaidi, I. (2015). Robust Stabilization and Observation for Positive Takagi–Sugeno systems, PhD thesis, Valladolid University, Valladolid.

[18] Zaidi, I., Chaabane, M., Tadeo, F. and Benzaouia, A. (2014). Static state feedback controller and observer design for interval positive systems with time-delay, IEEE Transactions on Circuits and Systems II 62(5): 506–510.

[19] Zhang, Z. and Yang, H. (2013). Stability and Hopf bifurcation in a three-species food chain system with harvesting and two delays, Journal of Computational and Nonlinear Dynamics 9(2), Paper no.: CND-12-1233.

[20] Zhu, S., Han, Q.-L. and Zhang, C. (2016). Investigating the effects of time-delays on stochastic stability and designing l1-gain controllers for positive discrete-time Markov jump linear systems with time-delay, Information Sciences 355(C): 265–281.

[21] Zhu, S., Han, Q.-L. and Zhang, C. (2017). l1-Stochastic stability and l1-gain performance of positive Markov jump linear systems with time-delays: Necessary and sufficient conditions, IEEE Transactions on Automatic Control 62(7): 3634–3639.

[22] Zhu, S., Meng, M. and Zhang, C. (2013). Exponential stability for positive systems with bounded time-varying delays and static output feedback stabilization, Journal of The Franklin Institute 350(3): 617–636.