Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2018_28_2_a8, author = {Gugat, M. and Wintergerst, D.}, title = {Transient flow in gas networks: {Traveling} waves}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {341--348}, publisher = {mathdoc}, volume = {28}, number = {2}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_2_a8/} }
TY - JOUR AU - Gugat, M. AU - Wintergerst, D. TI - Transient flow in gas networks: Traveling waves JO - International Journal of Applied Mathematics and Computer Science PY - 2018 SP - 341 EP - 348 VL - 28 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_2_a8/ LA - en ID - IJAMCS_2018_28_2_a8 ER -
Gugat, M.; Wintergerst, D. Transient flow in gas networks: Traveling waves. International Journal of Applied Mathematics and Computer Science, Tome 28 (2018) no. 2, pp. 341-348. http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_2_a8/
[1] Banda, M.K., Herty, M. and Klar, A. (2006). Coupling conditions for gas networks governed by the isothermal Euler equations, Networks and Heterogeneous Media 1(2): 295–314.
[2] Bounit, H. (2003). The stability of an irrigation canal system, International Journal of Applied Mathematics and Computer Science 13(4): 453–468.
[3] Caputo, J.-G. and Dutykh, D. (2014). Nonlinear waves in networks: Model reduction for the sine-Gordon equation, Physical Review E 90(2): 022912.
[4] Corless, R.M., Gonnet, G.H., Hare, D.E., Jeffrey, D.J. and Knuth, D.E. (1996). On the Lambert W function, Advances in Computational Mathematics 5(1): 329–359.
[5] de Almeida, J.C., Velásquez, J. and Barbieri, R. (2014). A methodology for calculating the natural gas compressibility factor for a distribution network, Petroleum Science and Technology 32(21): 2616–2624.
[6] Dos Santos Martins, V., Rodrigues, M. and Diagne, M. (2012). A multi-model approach to Saint-Venant equations: A stability study by LMIs, International Journal of Applied Mathematics and Computer Science 22(3): 539–550, DOI: 10.2478/v10006-012-0041-6.
[7] Gugat, M., Hante, F., Hirsch-Dick, M. and Leugering, G. (2015). Stationary states in gas networks, Networks and Heterogeneous Media 10(2): 295–320.
[8] Gugat, M., Schultz, R. and Wintergerst, D. (2018). Networks of pipelines for gas with nonconstant compressibility factor: Stationary states, Computational and Applied Mathematics 37(2): 1066–1097.
[9] Gugat, M. and Ulbrich, S. (2017). The isothermal Euler equations for ideal gas with source term: Product solutions, flow reversal and no blow up, Journal of Mathematical Analysis and Applications 454(1): 439–452.
[10] Kirchhoff, G. (1847). Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird, Annalen der Physik 148(12): 497–508.
[11] Lambert, J.H. (1758). Observationes variae in mathesin puram, Acta Helvetica 3(1): 128–168.
[12] Li, D. (2010). Controllability and Observability for Quasilinear Hyperbolic Systems, American Institute of Mathematical Sciences Springfield, IL, USA.
[13] Liu, M., Zang, S. and Zhou, D. (2005). Fast leak detection and location of gas pipelines based on an adaptive particle filter, International Journal of Applied Mathematics and Computer Science 15(4): 541–550.
[14] Mugnolo, D. and Rault, J.-F. (2014). Construction of exact travelling waves for the Benjamin–Bona–Mahony equation on networks, Bulletin of the Belgian Mathematical Society Simon Stevin 21(3): 415–436.
[15] Osiadacz, A. (1984). Simulation of transient gas flows in networks, International Journal for Numerical Methods in Fluids 4(1): 13–24.
[16] Osiadacz, A. (1987). Simulation and Analysis of Gas Networks, Gulf Publishing Company, Houston, TX.
[17] Starling, K.E. and Savidge, J.L. (1992). Compressibility Factors of Natural Gas and Other Related Hydrocarbon Gases, American Gas Association, Washington, DC.
[18] Veberic, D. (2010). Having fun with Lambert W(x) function, arXiv preprint 1003.1628.
[19] Whitham, G.B. (1974). Linear and Nonlinear Waves, Wiley, New York, NY.