Robust stabilization using a sampled-data strategy of uncertain neutral state-delayed systems subject to input limitations
International Journal of Applied Mathematics and Computer Science, Tome 28 (2018) no. 1, pp. 111-122.

Voir la notice de l'article provenant de la source Library of Science

Stabilization of neutral systems with state delay is considered in the presence of uncertainty and input limitations in magnitude. The proposed solution is based on simultaneously characterizing a set of stabilizing controllers and the associated admissible initial conditions through the use of a free weighting matrix approach. From this mathematical characterization, state feedback gains that ensure a large set of admissible initial conditions are calculated by solving an optimization problem with LMI constraints. Some examples are presented to compare the results with previous approaches in the literature.
Keywords: robust stabilization, sampled data, time-delay system, input saturation, admissible initial conditions, LMI
Mots-clés : stabilizacja odporna, dane próbkowane, układ z opóźnieniem, nasycenie wejściowe
@article{IJAMCS_2018_28_1_a7,
     author = {El Fezazi, N. and El Haoussi, F. and Tissir, E. H. and Alvarez, T. and Tadeo, F.},
     title = {Robust stabilization using a sampled-data strategy of uncertain neutral state-delayed systems subject to input limitations},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {111--122},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_1_a7/}
}
TY  - JOUR
AU  - El Fezazi, N.
AU  - El Haoussi, F.
AU  - Tissir, E. H.
AU  - Alvarez, T.
AU  - Tadeo, F.
TI  - Robust stabilization using a sampled-data strategy of uncertain neutral state-delayed systems subject to input limitations
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2018
SP  - 111
EP  - 122
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_1_a7/
LA  - en
ID  - IJAMCS_2018_28_1_a7
ER  - 
%0 Journal Article
%A El Fezazi, N.
%A El Haoussi, F.
%A Tissir, E. H.
%A Alvarez, T.
%A Tadeo, F.
%T Robust stabilization using a sampled-data strategy of uncertain neutral state-delayed systems subject to input limitations
%J International Journal of Applied Mathematics and Computer Science
%D 2018
%P 111-122
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_1_a7/
%G en
%F IJAMCS_2018_28_1_a7
El Fezazi, N.; El Haoussi, F.; Tissir, E. H.; Alvarez, T.; Tadeo, F. Robust stabilization using a sampled-data strategy of uncertain neutral state-delayed systems subject to input limitations. International Journal of Applied Mathematics and Computer Science, Tome 28 (2018) no. 1, pp. 111-122. http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_1_a7/

[1] Cao, Y.-Y., Lin, Z. and Hu, T. (2002). Stability analysis of linear time-delay systems subject to input saturation, IEEE Transactions on Circuits and Systems 49(2): 233–240.

[2] Chen, Y., Fei, S. and Li, Y. (2015). Stabilization of neutral time-delay systems with actuator saturation via auxiliary time-delay feedback, Automatica 52: 242–247.

[3] Da Silva, J.M.G., Seuret, A., Fridman, E. and Richard, J.P. (2011). Stabilization of neutral systems with saturating control inputs, International Journal of Systems Science 42(7): 1093–1103.

[4] Dey, R., Ghosh, S., Ray, G. and Rakshit, A. (2014). Improved delay-dependent stabilization of time-delay systems with actuator saturation, International Journal of Robust and Nonlinear Control 24(5): 902–917.

[5] El Fezazi, N., El Haoussi, F., Tissir, E.H., Alvarez, T. and Tadeo, F. (2017). Robust stabilization using LMI techniques of neutral time-delay systems subject to input saturation, Journal of Physics: Conference Series 783(1): 012031.

[6] El Fezazi, N., Lamrabet, O., El Haoussi, F., Tissir, E.H., Alvarez, T. and Tadeo, F. (2016). Robust controller design for congestion control in TCP/IP routers, 5th IEEE International Conference on Systems and Control, Marrakesh, Morocco, pp. 243–249.

[7] El Fezazi, N., El Haoussi, F., Tissir, E.H., Husain, A.R. and Zakaria, M.I. (2016). Delay-dependent robust anti-windup synthesis approach to AQMin TCP/IP networks, 2nd IEEE International Conference on Electrical and Information Technologies, Tanger, Morocco, pp. 294–299.

[8] El Fezazi, N., El Haoussi, F., Tissir, E. H. and Tadeo, F. (2015). Delay dependent anti-windup synthesis for time-varying delay systems with saturating actuators, International Journal of Computer Applications 111(1): 1–6.

[9] El Haoussi, F., Tissir, E.H., Tadeo, F. and Hmamed, A. (2013). Robust stabilization with saturating actuators of neutral and state delayed systems, International Journal of Sciences and Techniques of Automatic Control and Computer Engineering 7(1): 1878–1889.

[10] El Haoussi, F. and Tissir, E.H. (2010). Delay and its time-derivative dependent robust stability of uncertain neutral systems with saturating actuators, International Journal of Automation and Computing 7(4): 455–462.

[11] Fridman, E., Seuret, A. and Richard, J.P. (2004). Robust sampled-data stabilization of linear systems: An input delay approach, Automatica 40(8): 1441–1446.

[12] Gu, K., Chen, J. and Kharitonov, V. (2003). Stability of Time-Delay Systems, Springer Science and Business Media, Basel.

[13] Lee, Y.S., Moon, Y.S., Kwon, W.H. and Park, P.G. (2004). Delay-dependent robust H∞ control for uncertain systems with a state-delay, Automatica 40(1): 65–72.

[14] Liu, P.L. (2011). Delay-dependent stabilization for linear time-delay uncertain systems with saturating actuators, International Journal of General Systems 40(3): 301–312.

[15] Liu, P.-L. (2005). Delay-dependent asymptotic stabilization for uncertain time-delay systems with saturating actuators, International Journal of Applied Mathematics and Computer Science 15(1): 45–51.

[16] Manitius, A.Z. (1984). Feedback controllers for a wind tunnel model involving a delay: Analytical design and numerical simulation, IEEE Transactions on Automatic Control 29(12): 1058–1068.

[17] Mesquine, F., Tadeo, F., and Benzaouia, A. (2004). Regulator problem for linear systems with constraints on control and its increment or rate, Automatica 40(8): 1387–1395.

[18] Peterson, I.R. (1987). A stabilization algorithm for a class of uncertain linear systems, Systems and Control Letters 8(4): 351–357.

[19] Seuret, A. and Da Silva, J.M.G. (2012). Taking into account period variations and actuator saturation in sampled-data systems, Systems and Control Letters 61(12): 1286–1293.

[20] Tarbouriech, S., Da Silva, J.M.G. and Garcia, G. (2003). Delay-dependent anti-windup loops for enlarging the stability region of time-delay systems with saturating inputs, Journal of Dynamic Systems, Measurement, and Control 125(2): 265–267.

[21] Thuan, M.V., Phat, V.N. and Trinh, H. (2012). Observer-based controller design of time-delay systems with an interval time-varying delay, International Journal of Applied Mathematics and Computer Science 22(4): 921–927, DOI: 10.2478/v10006-012-0068-8.

[22] Tissir, E.H. (2010). Delay-dependent robust stabilization for systems with uncertain time varying delay, Journal of Dynamic Systems, Measurement, and Control 132(5): 054504.

[23] Tissir, E.H. and Hmamed, A. (1992). Further results on the stabilization of time delay systems containing saturating actuators, International Journal of Systems Science 23(4): 615–622.

[24] Wang, H.P., Tian, Y. and Christov, N. (2014). Piecewise-continuous observers for linear systems with sampled and delayed output, International Journal of Systems Science 47(8): 1804–1815.

[25] Wang, H.P., Tian, Y. and Vasseur, C. (2015). Piecewise continuous hybrid systems based observer design for linear systems with variable sampling periods and delay output, Signal Processing 114: 75–84.

[26] Zakaria, M.I., Husain, A.R., Mohamed, Z., El Fezazi, N. and Shah, M.B.N. (2015). Lyapunov–Krasovskii stability condition for system with bounded delay-an application to steer-by-wire system, 5th IEEE International Conference on Control System, Computing and Engineering, Penang, Malaysia, pp. 543–547.

[27] Zhang, X.-M., Wu, M., She, J.-H. and He, Y. (2005). Delay-dependent stabilization of linear systems with time-varying state and input delays, Automatica 41(8): 1405–1412.