Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2018_28_1_a7, author = {El Fezazi, N. and El Haoussi, F. and Tissir, E. H. and Alvarez, T. and Tadeo, F.}, title = {Robust stabilization using a sampled-data strategy of uncertain neutral state-delayed systems subject to input limitations}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {111--122}, publisher = {mathdoc}, volume = {28}, number = {1}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_1_a7/} }
TY - JOUR AU - El Fezazi, N. AU - El Haoussi, F. AU - Tissir, E. H. AU - Alvarez, T. AU - Tadeo, F. TI - Robust stabilization using a sampled-data strategy of uncertain neutral state-delayed systems subject to input limitations JO - International Journal of Applied Mathematics and Computer Science PY - 2018 SP - 111 EP - 122 VL - 28 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_1_a7/ LA - en ID - IJAMCS_2018_28_1_a7 ER -
%0 Journal Article %A El Fezazi, N. %A El Haoussi, F. %A Tissir, E. H. %A Alvarez, T. %A Tadeo, F. %T Robust stabilization using a sampled-data strategy of uncertain neutral state-delayed systems subject to input limitations %J International Journal of Applied Mathematics and Computer Science %D 2018 %P 111-122 %V 28 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_1_a7/ %G en %F IJAMCS_2018_28_1_a7
El Fezazi, N.; El Haoussi, F.; Tissir, E. H.; Alvarez, T.; Tadeo, F. Robust stabilization using a sampled-data strategy of uncertain neutral state-delayed systems subject to input limitations. International Journal of Applied Mathematics and Computer Science, Tome 28 (2018) no. 1, pp. 111-122. http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_1_a7/
[1] Cao, Y.-Y., Lin, Z. and Hu, T. (2002). Stability analysis of linear time-delay systems subject to input saturation, IEEE Transactions on Circuits and Systems 49(2): 233–240.
[2] Chen, Y., Fei, S. and Li, Y. (2015). Stabilization of neutral time-delay systems with actuator saturation via auxiliary time-delay feedback, Automatica 52: 242–247.
[3] Da Silva, J.M.G., Seuret, A., Fridman, E. and Richard, J.P. (2011). Stabilization of neutral systems with saturating control inputs, International Journal of Systems Science 42(7): 1093–1103.
[4] Dey, R., Ghosh, S., Ray, G. and Rakshit, A. (2014). Improved delay-dependent stabilization of time-delay systems with actuator saturation, International Journal of Robust and Nonlinear Control 24(5): 902–917.
[5] El Fezazi, N., El Haoussi, F., Tissir, E.H., Alvarez, T. and Tadeo, F. (2017). Robust stabilization using LMI techniques of neutral time-delay systems subject to input saturation, Journal of Physics: Conference Series 783(1): 012031.
[6] El Fezazi, N., Lamrabet, O., El Haoussi, F., Tissir, E.H., Alvarez, T. and Tadeo, F. (2016). Robust controller design for congestion control in TCP/IP routers, 5th IEEE International Conference on Systems and Control, Marrakesh, Morocco, pp. 243–249.
[7] El Fezazi, N., El Haoussi, F., Tissir, E.H., Husain, A.R. and Zakaria, M.I. (2016). Delay-dependent robust anti-windup synthesis approach to AQMin TCP/IP networks, 2nd IEEE International Conference on Electrical and Information Technologies, Tanger, Morocco, pp. 294–299.
[8] El Fezazi, N., El Haoussi, F., Tissir, E. H. and Tadeo, F. (2015). Delay dependent anti-windup synthesis for time-varying delay systems with saturating actuators, International Journal of Computer Applications 111(1): 1–6.
[9] El Haoussi, F., Tissir, E.H., Tadeo, F. and Hmamed, A. (2013). Robust stabilization with saturating actuators of neutral and state delayed systems, International Journal of Sciences and Techniques of Automatic Control and Computer Engineering 7(1): 1878–1889.
[10] El Haoussi, F. and Tissir, E.H. (2010). Delay and its time-derivative dependent robust stability of uncertain neutral systems with saturating actuators, International Journal of Automation and Computing 7(4): 455–462.
[11] Fridman, E., Seuret, A. and Richard, J.P. (2004). Robust sampled-data stabilization of linear systems: An input delay approach, Automatica 40(8): 1441–1446.
[12] Gu, K., Chen, J. and Kharitonov, V. (2003). Stability of Time-Delay Systems, Springer Science and Business Media, Basel.
[13] Lee, Y.S., Moon, Y.S., Kwon, W.H. and Park, P.G. (2004). Delay-dependent robust H∞ control for uncertain systems with a state-delay, Automatica 40(1): 65–72.
[14] Liu, P.L. (2011). Delay-dependent stabilization for linear time-delay uncertain systems with saturating actuators, International Journal of General Systems 40(3): 301–312.
[15] Liu, P.-L. (2005). Delay-dependent asymptotic stabilization for uncertain time-delay systems with saturating actuators, International Journal of Applied Mathematics and Computer Science 15(1): 45–51.
[16] Manitius, A.Z. (1984). Feedback controllers for a wind tunnel model involving a delay: Analytical design and numerical simulation, IEEE Transactions on Automatic Control 29(12): 1058–1068.
[17] Mesquine, F., Tadeo, F., and Benzaouia, A. (2004). Regulator problem for linear systems with constraints on control and its increment or rate, Automatica 40(8): 1387–1395.
[18] Peterson, I.R. (1987). A stabilization algorithm for a class of uncertain linear systems, Systems and Control Letters 8(4): 351–357.
[19] Seuret, A. and Da Silva, J.M.G. (2012). Taking into account period variations and actuator saturation in sampled-data systems, Systems and Control Letters 61(12): 1286–1293.
[20] Tarbouriech, S., Da Silva, J.M.G. and Garcia, G. (2003). Delay-dependent anti-windup loops for enlarging the stability region of time-delay systems with saturating inputs, Journal of Dynamic Systems, Measurement, and Control 125(2): 265–267.
[21] Thuan, M.V., Phat, V.N. and Trinh, H. (2012). Observer-based controller design of time-delay systems with an interval time-varying delay, International Journal of Applied Mathematics and Computer Science 22(4): 921–927, DOI: 10.2478/v10006-012-0068-8.
[22] Tissir, E.H. (2010). Delay-dependent robust stabilization for systems with uncertain time varying delay, Journal of Dynamic Systems, Measurement, and Control 132(5): 054504.
[23] Tissir, E.H. and Hmamed, A. (1992). Further results on the stabilization of time delay systems containing saturating actuators, International Journal of Systems Science 23(4): 615–622.
[24] Wang, H.P., Tian, Y. and Christov, N. (2014). Piecewise-continuous observers for linear systems with sampled and delayed output, International Journal of Systems Science 47(8): 1804–1815.
[25] Wang, H.P., Tian, Y. and Vasseur, C. (2015). Piecewise continuous hybrid systems based observer design for linear systems with variable sampling periods and delay output, Signal Processing 114: 75–84.
[26] Zakaria, M.I., Husain, A.R., Mohamed, Z., El Fezazi, N. and Shah, M.B.N. (2015). Lyapunov–Krasovskii stability condition for system with bounded delay-an application to steer-by-wire system, 5th IEEE International Conference on Control System, Computing and Engineering, Penang, Malaysia, pp. 543–547.
[27] Zhang, X.-M., Wu, M., She, J.-H. and He, Y. (2005). Delay-dependent stabilization of linear systems with time-varying state and input delays, Automatica 41(8): 1405–1412.