Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2018_28_1_a4, author = {Li, S. and Wang, H. and Aitouche, A. and Tian, Y. and Christov, N.}, title = {Active fault tolerance control of a wind turbine system using an unknown input observer with an actuator fault}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {69--81}, publisher = {mathdoc}, volume = {28}, number = {1}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_1_a4/} }
TY - JOUR AU - Li, S. AU - Wang, H. AU - Aitouche, A. AU - Tian, Y. AU - Christov, N. TI - Active fault tolerance control of a wind turbine system using an unknown input observer with an actuator fault JO - International Journal of Applied Mathematics and Computer Science PY - 2018 SP - 69 EP - 81 VL - 28 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_1_a4/ LA - en ID - IJAMCS_2018_28_1_a4 ER -
%0 Journal Article %A Li, S. %A Wang, H. %A Aitouche, A. %A Tian, Y. %A Christov, N. %T Active fault tolerance control of a wind turbine system using an unknown input observer with an actuator fault %J International Journal of Applied Mathematics and Computer Science %D 2018 %P 69-81 %V 28 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_1_a4/ %G en %F IJAMCS_2018_28_1_a4
Li, S.; Wang, H.; Aitouche, A.; Tian, Y.; Christov, N. Active fault tolerance control of a wind turbine system using an unknown input observer with an actuator fault. International Journal of Applied Mathematics and Computer Science, Tome 28 (2018) no. 1, pp. 69-81. http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_1_a4/
[1] Armeni, S., Casavola, A. and Mosca, E. (2009). Robust fault detection and isolation for LPV systems under a sensitivity constraint, International Journal of Adaptive Control and Signal Processing 23(1): 55–72.
[2] Bianchi, F.D., Mantz, R.J. and De Battista, H. (2007). Wind Turbine Control Systems: Principles, Modelling and Gain Scheduling Design, Springer, London.
[3] Blesa, J., Rotondo, D., Puig, V. and Nejjari, F. (2014). FDI and FTC of wind turbines using the interval observer approach and virtual actuators/sensors, Control Engineering Practice 24(1): 138–155.
[4] Boulkroune, B., Djemili, I., Aitouche, A. and Cocquempot, V. (2013). Robust nonlinear observer design for actuator fault detection in diesel engines, International Journal of Applied Mathematics and Computer Science 23(3): 557–569, DOI: 10.2478/amcs-2013-0042.
[5] Chen, W. and Saif, M. (2006). Fault detection and isolation based on novel unknown input observer design, Proceedings of the American Control Conference, Minnesota, MN, USA, pp. 245–250.
[6] Bianchi, F.D. and De Battista, R.J.M. (2007). Wind Turbine Control Systems: Principles, Modelling and Gain Scheduling Design, Springer, London.
[7] Georg, S. and Schulte, H. (2013). Actuator fault diagnosis and fault-tolerant control of wind turbines using a Takagi–Sugeno sliding mode observer, 2013 Conference on Control and Fault-Tolerant Systems (SysTol), Nice, France, pp. 516–522.
[8] Georg, S. and Schulte, H. (2014). Takagi–Sugeno sliding mode observer with a weighted switching action and application to fault diagnosis for wind turbines, in J. Korbicz and M. Kowal (Eds.), Intelligent Systems in Technical and Medical Diagnostics, Springer, Berlin, pp. 41–52.
[9] Georges, J.-P., Theilliol, D., Cocquempot, V., Ponsart, J.-C. and Aubrun, C. (2011). Fault tolerance in networked control systems under intermittent observations, International Journal of Applied Mathematics and Computer Science 21(4): 639–648, DOI: 10.2478/v10006-011-0050-x.
[10] Hamdi, H., Rodrigues, M., Mechmeche, C., Theilliol, D. and Braiek, N.B. (2012). Fault detection and isolation in linear parameter-varying descriptor systems via proportional integral observer, International Journal of Adaptive Control Signal Processing 26(3): 224240.
[11] Hassanabadi, A.H., Shafiee, M. and Puig, V. (2016). UIO design for singular delayed LPV systems with application to actuator fault detection and isolation, International Journal of Systems Science 47(1): 107–121.
[12] Jonkman, J., Butterfield, S., Musial, W. and Scott, G. (2009). Definition of a 5-MW reference wind turbine for offshore system development, Technical Report No. NREL/TP-500-38060, National Renewable Energy Laboratory, Golden, CO.
[13] Kamal, E. and Aitouche, A. (2013). Robust fault tolerant control of DFIG wind energy systems with unknown inputs, Renewable Energy 56(4): 2–15.
[14] Kamal, E., Aitouche, A., Ghorbani, R. and Bayart, M. (2012). Robust fuzzy fault-tolerant control of wind energy conversion systems subject to sensor faults, IEEE Transactions on Sustainable Energy 3(2): 231–241.
[15] Kamal, E., Aitouche, A., Ghorbani, R. and Bayart, M. (2014). Fuzzy scheduler fault-tolerant control for wind energy conversion systems, IEEE Transactions on Control Systems Technology 22(1): 119–131.
[16] Khare, V., Nema, S. and Baredar, P. (2016). Solar-wind hybrid renewable energy system: A review, Renewable and Sustainable Energy Reviews 58: 23–33.
[17] Lofberg, J. (2004). YALMIP: A toolbox for modeling and optimization in Matlab, CACSD Conference, New Orleans, LA, USA, pp. 287–92.
[18] Odgaard, P.F., Stoustrup, J. and Kinnaert, M. (2009). Fault tolerant control of wind turbines—A benchmark model, IFAC Proceedings Volumes 42(8): 155–160.
[19] Odgaard, P.F., Stoustrup, J. and Kinnaert, M. (2013). Fault-tolerant control of wind turbines: A benchmark model, IEEE Transactions on Control Systems Technology 21(4): 1168–1182.
[20] Shi, F. and Patton, R. (2015). An active fault tolerant control approach to an offshore wind turbine model, Renewable Energy 75(C): 788–798.
[21] Simani, S. and Castaldi, P. (2012). Data-driven design of fuzzy logic fault tolerant control for a wind turbine benchmark, IFAC Proceedings Volumes 45(20): 108–113.
[22] Simani, S. and Castaldi, P. (2014). Active actuator fault-tolerant control of a wind turbine benchmark model, International Journal of Robust and Nonlinear Control 24(8–9): 1283–1303.
[23] Simani, S., Farsoni, S. and Castaldi, P. (2013). Robust actuator fault diagnosis of a wind turbine benchmark model, 2013 IEEE 52nd Annual Conference on Decision and Control (CDC), Florence, Italy, pp. 4422–4427.
[24] Simani, S., Farsoni, S. and Castaldi, P. (2015). Fault diagnosis of a wind turbine benchmark via identified fuzzy models, IEEE Transactions on Industrial Electronics 62(6): 3775–3782.
[25] Sloth, C., Esbensen, T. and Stoustrup, J. (2011). Robust and fault-tolerant linear parameter-varying control of wind turbines, Mechatronics 21(4): 645–659.
[26] Zhang, K., Jiang, B., Cocquempot, V. (2008). Adaptive observer-based fast fault estimation, International Journal of Control Automation and Systems 6(3): 320.