Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2018_28_1_a3, author = {Srinivasarengan, K. and Ragot, J. and Aubrun, C. and Maquin, D.}, title = {An adaptive observer design approach for a class of discrete-time nonlinear systems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {55--67}, publisher = {mathdoc}, volume = {28}, number = {1}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_1_a3/} }
TY - JOUR AU - Srinivasarengan, K. AU - Ragot, J. AU - Aubrun, C. AU - Maquin, D. TI - An adaptive observer design approach for a class of discrete-time nonlinear systems JO - International Journal of Applied Mathematics and Computer Science PY - 2018 SP - 55 EP - 67 VL - 28 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_1_a3/ LA - en ID - IJAMCS_2018_28_1_a3 ER -
%0 Journal Article %A Srinivasarengan, K. %A Ragot, J. %A Aubrun, C. %A Maquin, D. %T An adaptive observer design approach for a class of discrete-time nonlinear systems %J International Journal of Applied Mathematics and Computer Science %D 2018 %P 55-67 %V 28 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_1_a3/ %G en %F IJAMCS_2018_28_1_a3
Srinivasarengan, K.; Ragot, J.; Aubrun, C.; Maquin, D. An adaptive observer design approach for a class of discrete-time nonlinear systems. International Journal of Applied Mathematics and Computer Science, Tome 28 (2018) no. 1, pp. 55-67. http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_1_a3/
[1] Bezzaoucha, S., Marx, B., Maquin, D. and Ragot, J. (2013a). State and parameter estimation for nonlinear systems: A Takagi–Sugeno approach, American Control Conference, ACC’2013, Washington, DC, USA, pp. 1050–1055.
[2] Bezzaoucha, S., Marx, B., Maquin, D. and Ragot, J. (2013b). State and parameter estimation for time-varying systems: A Takagi–Sugeno approach, 5th Symposium on System Structure and Control/IFAC Joint Conference 2013 SSSC, Grenoble, France.
[3] Blanco, Y. (2001). Stabilisation des Modeles Takagi-Sugeno et leur usage pour la commande des systemes non lineaires, PhD thesis, Université des Sciences et Technologies de Lille, Lille.
[4] Boyd, S.P., El Ghaoui, L., Feron, E. and Balakrishnan, V. (1994). Linear Matrix Inequalities in System and Control Theory, SIAM, NewYork, NY.
[5] Caccavale, F., Pierri, F. and Villani, L. (2008). Adaptive observer for fault diagnosis in nonlinear discrete-time systems, Journal of Dynamic Systems, Measurement, and Control 130(2): 021005.
[6] Cho, Y.M. and Rajamani, R. (1997). A systematic approach to adaptive observer synthesis for nonlinear systems, IEEE Transactions on Automatic Control 42(4): 534–537.
[7] Ţiclea, A. and Besançon, G. (2016). Adaptive observer design for discrete time LTV systems, International Journal of Control 89(12): 2385–2395.
[8] de Souza, C.E. and Xie, L. (1992). On the discrete-time bounded real lemma with application in the characterization of static state feedback H∞ controllers, Systems Control Letters 18(1): 61–71.
[9] Guyader, A. and Zhang, Q. (2003). Adaptive observer for discrete time linear time varying systems, 13th IFAC/IFORS Symposium on System Identification, SYSID’2003, Rotterdam, The Netherlands, pp. 1705–1710.
[10] Ichalal, D., Mammar, S., Dabladji, M. E.-H. and Ragot, J. (2015). Observer design for a class of discrete-time quasi-LPV systems with unknown parameters: Algebraic approach, 2015 European Control Conference (ECC), Linz, Austria, pp. 915–920.
[11] Ichalal, D., Marx, B., Maquin, D. and Ragot, J. (2016). A method to avoid the unmeasurable premise variables in observer design for discrete time TS systems, International Conference on Fuzzy Systems, FUZZ-IEEE’2016, Vancouver, Canada, pp. 2343–2348.
[12] Ichalal, D., Marx, B., Ragot, J. and Maquin, D. (2009). State and unknown input estimation for nonlinear systems described by Takagi–Sugeno models with unmeasurable premise variables, 17th Mediterranean Conference on Control and Automation, MED’09, Thessaloniki, Greece, pp. 217–222.
[13] Kwiatkowski, A., Boll, M.T. and Werner, H. (2006). Automated generation and assessment of affine LPV models, Proceedings of the 45th IEEE Conference on Decision and Control CDC’06, San Diego, CA, USA, pp. 6690–6695.
[14] Lendek, Z., Guerra, T.M. and De Schutter, B. (2010). Stability analysis and nonlinear observer design using Takagi–Sugeno fuzzy models, Fuzzy Sets and Systems 161(15): 2043–2065.
[15] Löfberg, J. (2004). YALMIP: A toolbox for modeling and optimization in Matlab, International Symposium on Computer Aided Control Systems Design, Taipei, Taiwan, pp. 284–289.
[16] Nagy, A.M., Mourot, G., Marx, B., Ragot, J. and Schutz, G. (2010). Systematic multimodeling methodology applied to an activated sludge reactor model, Industrial Engineering Chemistry Research 49(6): 2790–2799.
[17] Ohtake, H., Tanaka, K. and Wang, H.O. (2003). Fuzzy modeling via sector nonlinearity concept, Integrated Computer-Aided Engineering 10(4): 333–341.
[18] Srinivasarengan, K., Ragot, J., Maquin, D. and Aubrun, C. (2016a). Joint state and parameter estimation for discrete-time Takagi–Sugeno model, 13th European Workshop on Advanced Control and Diagnosis, ACD 2016, Lille, France, pp. 012016.
[19] Srinivasarengan, K., Ragot, J., Maquin, D. and Aubrun, C. (2016b). Nonlinear joint state-parameter observer for VAV damper position estimation, 3rd Conference on Control and Fault-Tolerant Systems, SysTol 2016, Barcelona, Spain, pp. 164–169.
[20] Tanaka, K. and Wang, H.O. (2004). Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach, John Wiley Sons, New York, NY.
[21] Thumati, B.T. and Sarangapani, J. (2008). A model based fault detection scheme for nonlinear multivariable discrete-time systems, 2008 IEEE International Conference on Systems, Man and Cybernetics, Singapore, pp. 1978–1983.
[22] Zhou, K. and Khargonekar, P.P. (1988). Robust stabilization of linear systems with norm-bounded time-varying uncertainty, Systems Control Letters 10(1): 17–20.