Feedback linearization of an active magnetic bearing system operated with a zero-bias flux
International Journal of Applied Mathematics and Computer Science, Tome 27 (2017) no. 3, pp. 539-548.

Voir la notice de l'article provenant de la source Library of Science

Input-output linearization by state feedback is applied to a flux-controlled active magnetic bearing (AMB) system, operated in the zero-bias mode. Two models of the AMB system are employed. The first one is described by the third-order dynamics with a flux-dependent voltage switching scheme, whereas the second one is the fourth-order system, called self-sensing AMB, since it does not require the measurement of the rotor position. In the case of that system we had to find the flat outputs to guarantee its stability. The proposed control schemes are verified by means of numerical simulations performed within the Matlab environment.
Keywords: active magnetic bearing, flux control, zero bias, feedback linearization, flat outputs
Mots-clés : łożysko magnetyczne aktywne, regulacja strumienia, linearyzacja sprzężenia zwrotnego
@article{IJAMCS_2017_27_3_a7,
     author = {Mystkowski, A. and Kaparin, V. and Kotta, \"U. and Pawluszewicz, E. and T\~onso, M.},
     title = {Feedback linearization of an active magnetic bearing system operated with a zero-bias flux},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {539--548},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_3_a7/}
}
TY  - JOUR
AU  - Mystkowski, A.
AU  - Kaparin, V.
AU  - Kotta, Ü.
AU  - Pawluszewicz, E.
AU  - Tõnso, M.
TI  - Feedback linearization of an active magnetic bearing system operated with a zero-bias flux
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2017
SP  - 539
EP  - 548
VL  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_3_a7/
LA  - en
ID  - IJAMCS_2017_27_3_a7
ER  - 
%0 Journal Article
%A Mystkowski, A.
%A Kaparin, V.
%A Kotta, Ü.
%A Pawluszewicz, E.
%A Tõnso, M.
%T Feedback linearization of an active magnetic bearing system operated with a zero-bias flux
%J International Journal of Applied Mathematics and Computer Science
%D 2017
%P 539-548
%V 27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_3_a7/
%G en
%F IJAMCS_2017_27_3_a7
Mystkowski, A.; Kaparin, V.; Kotta, Ü.; Pawluszewicz, E.; Tõnso, M. Feedback linearization of an active magnetic bearing system operated with a zero-bias flux. International Journal of Applied Mathematics and Computer Science, Tome 27 (2017) no. 3, pp. 539-548. http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_3_a7/

[1] Baloh, M., Tao, G. and Allaire, P. (2000). Modeling and control of a magnetic bearing actuated beam, American Control Conference, Chicago, IL, USA, pp. 1602–1606.

[2] Charara, A., De Miras, J. and Caron, B. (1996). Nonlinear control of a magnetic levitation system without premagnetization, IEEE Transactions on Control Systems Technology 4(5): 513–523.

[3] Chen, M. and Knospe, C.R. (2005). Feedback linearization of active magnetic bearings: Current-mode implementation, IEEE/ASME Transactions on Mechatronics 10(6): 632–639.

[4] Conte, G., Moog, C.H. and Perdon, A.M. (2007). Algebraic Methods for Nonlinear Control Systems. Theory and Applications, 2nd Edn., Springer, London.

[5] Ghosh, J., Mukherjee, D., Baloh, M. and Paden, B. (2000). Nonlinear control of a benchmark beam balance experiment using variable hyperbolic bias, American Control Conference, Chicago, IL, USA, pp. 2149–2153.

[6] Isidori, A. (1995). Nonlinear Control Systems, 3rd Edn., Springer, London.

[7] Jastrzebski, R.P., Smirnov, A., Mystkowski, A. and Pyrhönen, O. (2014). Cascaded position-flux controller for an AMB system operating at zero bias, Energies 7(6): 3561–3575.

[8] Joo, S.J. and Seo, J.H. (1997). Design and analysis of the nonlinear feedback linearizing control for an electromagnetic suspension system, IEEE Transactions on Control Systems Technology 5(1): 135–144.

[9] Ławryńczuk, M. (2015). Nonlinear state-space predictive control with on-line linearisation and state estimation, International Journal of Applied Mathematics and Computer Science 25(4): 833–847, DOI: 10.1515/amcs-2015-0060.

[10] Lévine, J. (2009). Analysis and Control of Nonlinear Systems: A Flatness-Based Approach, Springer, Berlin/Heidelberg.

[11] Lévine, J., Lottin, J. and Ponsart, J.-C. (1996). A nonlinear approach to the control of magnetic bearings, IEEE Transactions on Control Systems Technology 4(5): 524–544.

[12] Lindlau, J.D. and Knospe, C.R. (2002). Feedback linearization of an active magnetic bearing with voltage control, IEEE Transactions on Control Systems Technology 10(1): 21–31.

[13] Maslen, E.H. (2013). Self-sensing magnetic bearings, in G. Schweitzer and E.H.Maslen (Eds.), Magnetic Bearings: Theory, Design, and Application to Rotating Machinery, Springer, Berlin/Heidelberg, Chapter 15, pp. 435–459.

[14] Matsumura, F., Namerikawa, T. and Murata, N. (1999). Wide area stabilization of a magnetic bearing using exact linearization, Electrical Engineering in Japan 128(2): 53–62.

[15] Mittal, S. and Menq, C.-H. (1997). Precision motion control of a magnetic suspension actuator using a robust nonlinear compensation scheme, IEEE/ASME Transactions on Mechatronics 2(4): 268–280.

[16] Mystkowski, A., Pawluszewicz, E. and Dragašius, E. (2015a). Robust nonlinear position-flux zero-bias control for uncertain AMB system, International Journal of Control 88(8): 1619–1629.

[17] Mystkowski, A., Pawluszewicz, E. and Jastrzebski, R.P. (2015b). Nonlinear position-flux zero-bias control for AMB system, 20th International Conference on Methods and Models in Automation and Robotics, Międzyzdroje, Poland, pp. 471–476.

[18] Naz, N., Malik, M.B. and Salman, M. (2013). Real time implementation of feedback linearizing controllers for magnetic levitation system, IEEE Conference on Systems, Process and Control, Kuala Lumpur, Malaysia, pp. 52–56.

[19] Nijmeijer, H. and van der Schaft, A.J. (1990). Nonlinear Dynamical Control Systems, Springer, New York, NY.

[20] Sira-Ramírez, H. and Agrawal, S.K. (2004). Differentially Flat Systems, Automation and Control Engineering, Marcel Dekker, Inc., New York, NY.