Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2017_27_3_a7, author = {Mystkowski, A. and Kaparin, V. and Kotta, \"U. and Pawluszewicz, E. and T\~onso, M.}, title = {Feedback linearization of an active magnetic bearing system operated with a zero-bias flux}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {539--548}, publisher = {mathdoc}, volume = {27}, number = {3}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_3_a7/} }
TY - JOUR AU - Mystkowski, A. AU - Kaparin, V. AU - Kotta, Ü. AU - Pawluszewicz, E. AU - Tõnso, M. TI - Feedback linearization of an active magnetic bearing system operated with a zero-bias flux JO - International Journal of Applied Mathematics and Computer Science PY - 2017 SP - 539 EP - 548 VL - 27 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_3_a7/ LA - en ID - IJAMCS_2017_27_3_a7 ER -
%0 Journal Article %A Mystkowski, A. %A Kaparin, V. %A Kotta, Ü. %A Pawluszewicz, E. %A Tõnso, M. %T Feedback linearization of an active magnetic bearing system operated with a zero-bias flux %J International Journal of Applied Mathematics and Computer Science %D 2017 %P 539-548 %V 27 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_3_a7/ %G en %F IJAMCS_2017_27_3_a7
Mystkowski, A.; Kaparin, V.; Kotta, Ü.; Pawluszewicz, E.; Tõnso, M. Feedback linearization of an active magnetic bearing system operated with a zero-bias flux. International Journal of Applied Mathematics and Computer Science, Tome 27 (2017) no. 3, pp. 539-548. http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_3_a7/
[1] Baloh, M., Tao, G. and Allaire, P. (2000). Modeling and control of a magnetic bearing actuated beam, American Control Conference, Chicago, IL, USA, pp. 1602–1606.
[2] Charara, A., De Miras, J. and Caron, B. (1996). Nonlinear control of a magnetic levitation system without premagnetization, IEEE Transactions on Control Systems Technology 4(5): 513–523.
[3] Chen, M. and Knospe, C.R. (2005). Feedback linearization of active magnetic bearings: Current-mode implementation, IEEE/ASME Transactions on Mechatronics 10(6): 632–639.
[4] Conte, G., Moog, C.H. and Perdon, A.M. (2007). Algebraic Methods for Nonlinear Control Systems. Theory and Applications, 2nd Edn., Springer, London.
[5] Ghosh, J., Mukherjee, D., Baloh, M. and Paden, B. (2000). Nonlinear control of a benchmark beam balance experiment using variable hyperbolic bias, American Control Conference, Chicago, IL, USA, pp. 2149–2153.
[6] Isidori, A. (1995). Nonlinear Control Systems, 3rd Edn., Springer, London.
[7] Jastrzebski, R.P., Smirnov, A., Mystkowski, A. and Pyrhönen, O. (2014). Cascaded position-flux controller for an AMB system operating at zero bias, Energies 7(6): 3561–3575.
[8] Joo, S.J. and Seo, J.H. (1997). Design and analysis of the nonlinear feedback linearizing control for an electromagnetic suspension system, IEEE Transactions on Control Systems Technology 5(1): 135–144.
[9] Ławryńczuk, M. (2015). Nonlinear state-space predictive control with on-line linearisation and state estimation, International Journal of Applied Mathematics and Computer Science 25(4): 833–847, DOI: 10.1515/amcs-2015-0060.
[10] Lévine, J. (2009). Analysis and Control of Nonlinear Systems: A Flatness-Based Approach, Springer, Berlin/Heidelberg.
[11] Lévine, J., Lottin, J. and Ponsart, J.-C. (1996). A nonlinear approach to the control of magnetic bearings, IEEE Transactions on Control Systems Technology 4(5): 524–544.
[12] Lindlau, J.D. and Knospe, C.R. (2002). Feedback linearization of an active magnetic bearing with voltage control, IEEE Transactions on Control Systems Technology 10(1): 21–31.
[13] Maslen, E.H. (2013). Self-sensing magnetic bearings, in G. Schweitzer and E.H.Maslen (Eds.), Magnetic Bearings: Theory, Design, and Application to Rotating Machinery, Springer, Berlin/Heidelberg, Chapter 15, pp. 435–459.
[14] Matsumura, F., Namerikawa, T. and Murata, N. (1999). Wide area stabilization of a magnetic bearing using exact linearization, Electrical Engineering in Japan 128(2): 53–62.
[15] Mittal, S. and Menq, C.-H. (1997). Precision motion control of a magnetic suspension actuator using a robust nonlinear compensation scheme, IEEE/ASME Transactions on Mechatronics 2(4): 268–280.
[16] Mystkowski, A., Pawluszewicz, E. and Dragašius, E. (2015a). Robust nonlinear position-flux zero-bias control for uncertain AMB system, International Journal of Control 88(8): 1619–1629.
[17] Mystkowski, A., Pawluszewicz, E. and Jastrzebski, R.P. (2015b). Nonlinear position-flux zero-bias control for AMB system, 20th International Conference on Methods and Models in Automation and Robotics, Międzyzdroje, Poland, pp. 471–476.
[18] Naz, N., Malik, M.B. and Salman, M. (2013). Real time implementation of feedback linearizing controllers for magnetic levitation system, IEEE Conference on Systems, Process and Control, Kuala Lumpur, Malaysia, pp. 52–56.
[19] Nijmeijer, H. and van der Schaft, A.J. (1990). Nonlinear Dynamical Control Systems, Springer, New York, NY.
[20] Sira-Ramírez, H. and Agrawal, S.K. (2004). Differentially Flat Systems, Automation and Control Engineering, Marcel Dekker, Inc., New York, NY.