Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2017_27_3_a4, author = {Joice Nirmala, R. and Balachandran, K.}, title = {The controllability of nonlinear implicit fractional delay dynamical systems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {501--513}, publisher = {mathdoc}, volume = {27}, number = {3}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_3_a4/} }
TY - JOUR AU - Joice Nirmala, R. AU - Balachandran, K. TI - The controllability of nonlinear implicit fractional delay dynamical systems JO - International Journal of Applied Mathematics and Computer Science PY - 2017 SP - 501 EP - 513 VL - 27 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_3_a4/ LA - en ID - IJAMCS_2017_27_3_a4 ER -
%0 Journal Article %A Joice Nirmala, R. %A Balachandran, K. %T The controllability of nonlinear implicit fractional delay dynamical systems %J International Journal of Applied Mathematics and Computer Science %D 2017 %P 501-513 %V 27 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_3_a4/ %G en %F IJAMCS_2017_27_3_a4
Joice Nirmala, R.; Balachandran, K. The controllability of nonlinear implicit fractional delay dynamical systems. International Journal of Applied Mathematics and Computer Science, Tome 27 (2017) no. 3, pp. 501-513. http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_3_a4/
[1] Adams, J. and Hartley, T. (2008). Finite time controllability of fractional order systems, Journal of Computational and Nonlinear Dynamics 3(2): 1–5.
[2] Balachandran, K. (1988). Controllability of nonlinear systems with implicit derivatives, IMA Journal of Mathematical Control and Information 5(2): 77–83.
[3] Balachandran, K. (1989). Controllability of nonlinear delay systems with an implicit derivative, International Journal of Control 50(4): 1525–1531.
[4] Balachandran, K. and Divya, S. (2014). Controllability of nonlinear implicit fractional integrodifferential systems, International Journal of Applied Mathematics and Computer Science 24(4): 713–722, DOI: 10.2478/amcs-2014-0052.
[5] Balachandran, K. and Kokila, J. (2012). On the controllability of fractional dynamical systems, International Journal of Applied Mathematics and Computer Science 22(3): 523–531, DOI: 10.2478/v10006-012-0039-0.
[6] Balachandran, K. and Kokila, J. (2014). Controllability of non-linear implicit fractional dynamical systems, IMA Journal of Applied Mathematics 79(7): 562–570.
[7] Balachandran, K., Kokila, J. and Trujillo, J. (2012a). Relative controllability of fractional dynamical systems with multiple delays in control, Computer and Mathematics with Applications 64(10): 3037–3045.
[8] Balachandran, K., Park, J. and Trujillo, J. (2012b). Controllability of nonlinear fractional dynamical systems, Nonlinear Analysis 75(4): 1919–1926.
[9] Balachandran, K. and Somasundaram, D. (1983). Controllability of a class of nonlinear systems with distributed delays in control, Kybernetika 19(6): 475–481.
[10] Balachandran, K. and Somasundaram, D. (1986). Controllability of nonlinear delay systems with delay depending on state variable, Kybernetika 22(5): 439–444.
[11] Balachandran, K., Zhou, Y. and Kokila, J. (2012c). Relative controllability of fractional dynamical system with distributed delay in control, Computer and Mathematics with Applications 64(10): 3201–3209.
[12] Bellman, R. and Cooke, K. (1963). Differential-Difference Equations, Academic Press, New York, NY.
[13] Bettayeb, M. and Djennoune, S. (2008). New results on the controllability of fractional dynamical systems, Journal of Vibrating and Control 14(9): 1531–1541.
[14] Bhalekar, S. and Gejji, V. (2010). Fractional ordered Liu system with time-delay, Communication in Nonlinear Sciences and Numerical Simulation 15(8): 2178–2191.
[15] Bhalekar, S., Gejji, V., Baleanu, D. and Magin, R. (2011). Fractional Bloch equation with delay, Computer and Mathematics with Applications 61(5): 1355–1365.
[16] Dacka, C. (1980). On the controllability of a class of nonlinear systems, IEEE Transactions on Automatic Control 25(2): 263–266.
[17] Dacka, C. (1982). Relative controllability of perturbed nonlinear systems with delay in control, IEEE Transactions on Automatic Control 27(1): 268–270.
[18] Dauer, J. and Gahl, R. (1977). Controllability of nonlinear delay systems, Journal of Optimization Theory and Applications 21(1): 59–70.
[19] Hale, J. (1977). Theory of Functional Differential Equations, Springer, New York, NY.
[20] Joice Nirmala, R., Balachandran, K., Germa, L. and Trujillo, J. (2016). Controllability of nonlinear fractional delay dynamical systems, Reports on Mathematical Physics 77(1): 87–104.
[21] Kaczorek, T. (2011). Selected Problems of Fractional Systems Theory, Springer, Berlin.
[22] Kilbas, A., Srivastava, H. and Trujillo, J. (2006). Theory and Application of Fractional Differential Equations, Elsevier, Amsterdam.
[23] Klamka, J. (1976a). Controllability of linear systems with time variable delay in control, International Journal of Control 24(6): 869–878.
[24] Klamka, J. (1976b). Relative controllability of nonlinear systems with delay in control, Automatica 12(6): 633–634.
[25] Klamka, J. (2000). Schauder’s fixed-point theorem in nonlinear controllability problems, Control and Cybernetics 29(1): 153–165.
[26] Klamka, J. (2001). Constrained controllability of semilinear systems, Nonlinear Analysis 47: 2939–2949.
[27] Manzanilla, R., Marmol, L.G. and Vanegas, C.J. (2010). On the controllability of differential equation with delay, Abstract and Applied Analysis 2010: 1–16, Article ID 307409.
[28] Morgado, M., Ford, N. and Lima, P. (2013). Analysis and numerical methods for fractional differential equation with delay, Journal of Computational and Applied Mathematics 252: 159–168.
[29] Shamardan, A. and Moubarak, M. (1999). Controllability and observability for fractional control systems, Journal of Fractional Calculus 15(1): 25–34.
[30] Wang, Z. (2013). A numerical method for delayed fractional order differential equations, Journal of Applied Mathematics 2013: 1–7, Article ID 256071.
[31] Wiess, L. (1967). On the controllability of delayed differential systems, SIAM Journal of Control 5(4): 575–587.
[32] Yi, S., Nelson, P.W. and Ulsoy, A.G. (2008). Controllability and observability of systems of linear delay differential equation via the matrix Lambert function, IEEE Transactions on Automatic Control 53(3): 854–860.
[33] Zhang, H., Cao, J. and Jiang, W. (2013). Controllability criteria for linear fractional differential systems with state delay impulse, Journal of Applied Mathematics 2013: 1–9, Article ID 146010.