Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2017_27_3_a0, author = {Blizorukova, M. and Maksimov, V.}, title = {On an algorithm for the problem of tracking a trajectory of a parabolic equation}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {457--465}, publisher = {mathdoc}, volume = {27}, number = {3}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_3_a0/} }
TY - JOUR AU - Blizorukova, M. AU - Maksimov, V. TI - On an algorithm for the problem of tracking a trajectory of a parabolic equation JO - International Journal of Applied Mathematics and Computer Science PY - 2017 SP - 457 EP - 465 VL - 27 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_3_a0/ LA - en ID - IJAMCS_2017_27_3_a0 ER -
%0 Journal Article %A Blizorukova, M. %A Maksimov, V. %T On an algorithm for the problem of tracking a trajectory of a parabolic equation %J International Journal of Applied Mathematics and Computer Science %D 2017 %P 457-465 %V 27 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_3_a0/ %G en %F IJAMCS_2017_27_3_a0
Blizorukova, M.; Maksimov, V. On an algorithm for the problem of tracking a trajectory of a parabolic equation. International Journal of Applied Mathematics and Computer Science, Tome 27 (2017) no. 3, pp. 457-465. http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_3_a0/
[1] Banks, H.T. and Kappel, F. (1979). Spline approximation for functional–differential equations, Journal of Differential Equations 34(3): 406–522.
[2] Bernier, C. and Manitius, A. (1978). On semigroups in Rn ×Lp corresponding to differential equations with delays, Canadian Journal of Mathematics 30(5): 897–914.
[3] Blizorukova, M., Kappel, F. and Maksimov, V. (2001). A problem of robust control of a system with time delay, International Journal of Applied Mathematics and Computer Science 11(4): 821–834.
[4] Grimble, J.M., Johnson, M.A. (1988). Optimal Control and Stochastic Estimation: Theory and Applications, John Wiley Sons, Chichester.
[5] Kapustyan, V. and Maksimov, V. (2014). On attaining the prescribed quality of a controlled fourth order system, International Journal of Applied Mathematics and Computer Science 24(1): 75–85, DOI: 10.2478/amcs-2014-0006.
[6] Krasovskii, N.N. and Subbotin, A.I. (1988). Game-Theoretical Control Problems, Springer Verlag, New York, NY/Berlin.
[7] Kryazhimskiy, A.V. and Maksimov, V.I. (2011). Resource-saving tracking problem with infinite time horizon, Differential Equations 47(7): 1004–1013.
[8] Maksimov, V.I. (2011). The tracking of the trajectory of a dynamical system, Journal of Applied Mathematics and Mechanics 75(6): 667–674.
[9] Maksimov, V.I. (2002). Dynamic Inverse Problems of Distributed Systems, VSP, Utrecht/Boston, MA.
[10] Maksimov, V.I. (2012). On tracking solutions of parabolic equations, Russian Mathematic 56(1): 35–42.
[11] Maksimov, V.I. (2013). Regularized extremal shift in problems of stable control, in D. Hömberg and F. Tröltzsch (Eds.), IFIP Advances in Information and Communication Technology, Vol. 391, Springer, Berlin, pp. 112–121.
[12] Maksimov, V.I. (2014). Algorithm for shadowing the solution of a parabolic equation on an infinite time interval, Differential Equations 50(3): 362–371.
[13] Osipov, Yu.S. (2009). Selected Works, Moscow State University, Moscow.
[14] Pandolfi, L. and Priola, E. (2005). Tracking control of parabolic systems, Proceedings of the 21st IFIP TC7 Conference on System Modeling and Optimization, Sophia Antipolis, France, pp. 135–146.
[15] Prodan, I., Olaru, S., Stoica, C., and Niculescu, S.-I. (2013). Predictive control for trajectory tracking and decentralized navigation of multi-agent formations, International Journal of Applied Mathematics and Computer Science 23(1): 91–102, DOI: 10.2478/amcs-2013-0008.
[16] Sontag, E.D. (1990). Mathematical Control Theory, Springer Verlag, Berlin.