On an algorithm for the problem of tracking a trajectory of a parabolic equation
International Journal of Applied Mathematics and Computer Science, Tome 27 (2017) no. 3, pp. 457-465.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we consider the problem of tracking a solution of a reference parabolic equation by a solution of another equation. A stable algorithm based on the extremal shift method is proposed for this problem. The algorithm is designed to work on a sufficiently large time interval where both equations operate.
Keywords: parabolic equation, tracking problem, unknown disturbance
Mots-clés : równanie paraboliczne, śledzenie problemu, zakłócenie nieznane
@article{IJAMCS_2017_27_3_a0,
     author = {Blizorukova, M. and Maksimov, V.},
     title = {On an algorithm for the problem of tracking a trajectory of a parabolic equation},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {457--465},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_3_a0/}
}
TY  - JOUR
AU  - Blizorukova, M.
AU  - Maksimov, V.
TI  - On an algorithm for the problem of tracking a trajectory of a parabolic equation
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2017
SP  - 457
EP  - 465
VL  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_3_a0/
LA  - en
ID  - IJAMCS_2017_27_3_a0
ER  - 
%0 Journal Article
%A Blizorukova, M.
%A Maksimov, V.
%T On an algorithm for the problem of tracking a trajectory of a parabolic equation
%J International Journal of Applied Mathematics and Computer Science
%D 2017
%P 457-465
%V 27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_3_a0/
%G en
%F IJAMCS_2017_27_3_a0
Blizorukova, M.; Maksimov, V. On an algorithm for the problem of tracking a trajectory of a parabolic equation. International Journal of Applied Mathematics and Computer Science, Tome 27 (2017) no. 3, pp. 457-465. http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_3_a0/

[1] Banks, H.T. and Kappel, F. (1979). Spline approximation for functional–differential equations, Journal of Differential Equations 34(3): 406–522.

[2] Bernier, C. and Manitius, A. (1978). On semigroups in Rn ×Lp corresponding to differential equations with delays, Canadian Journal of Mathematics 30(5): 897–914.

[3] Blizorukova, M., Kappel, F. and Maksimov, V. (2001). A problem of robust control of a system with time delay, International Journal of Applied Mathematics and Computer Science 11(4): 821–834.

[4] Grimble, J.M., Johnson, M.A. (1988). Optimal Control and Stochastic Estimation: Theory and Applications, John Wiley Sons, Chichester.

[5] Kapustyan, V. and Maksimov, V. (2014). On attaining the prescribed quality of a controlled fourth order system, International Journal of Applied Mathematics and Computer Science 24(1): 75–85, DOI: 10.2478/amcs-2014-0006.

[6] Krasovskii, N.N. and Subbotin, A.I. (1988). Game-Theoretical Control Problems, Springer Verlag, New York, NY/Berlin.

[7] Kryazhimskiy, A.V. and Maksimov, V.I. (2011). Resource-saving tracking problem with infinite time horizon, Differential Equations 47(7): 1004–1013.

[8] Maksimov, V.I. (2011). The tracking of the trajectory of a dynamical system, Journal of Applied Mathematics and Mechanics 75(6): 667–674.

[9] Maksimov, V.I. (2002). Dynamic Inverse Problems of Distributed Systems, VSP, Utrecht/Boston, MA.

[10] Maksimov, V.I. (2012). On tracking solutions of parabolic equations, Russian Mathematic 56(1): 35–42.

[11] Maksimov, V.I. (2013). Regularized extremal shift in problems of stable control, in D. Hömberg and F. Tröltzsch (Eds.), IFIP Advances in Information and Communication Technology, Vol. 391, Springer, Berlin, pp. 112–121.

[12] Maksimov, V.I. (2014). Algorithm for shadowing the solution of a parabolic equation on an infinite time interval, Differential Equations 50(3): 362–371.

[13] Osipov, Yu.S. (2009). Selected Works, Moscow State University, Moscow.

[14] Pandolfi, L. and Priola, E. (2005). Tracking control of parabolic systems, Proceedings of the 21st IFIP TC7 Conference on System Modeling and Optimization, Sophia Antipolis, France, pp. 135–146.

[15] Prodan, I., Olaru, S., Stoica, C., and Niculescu, S.-I. (2013). Predictive control for trajectory tracking and decentralized navigation of multi-agent formations, International Journal of Applied Mathematics and Computer Science 23(1): 91–102, DOI: 10.2478/amcs-2013-0008.

[16] Sontag, E.D. (1990). Mathematical Control Theory, Springer Verlag, Berlin.