Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2017_27_2_a4, author = {Przybylski, M. and Putz, B.}, title = {D* {Extra} {Lite:} {A} dynamic {A*} with search-tree cutting and frontier-gap repairing}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {273--290}, publisher = {mathdoc}, volume = {27}, number = {2}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_2_a4/} }
TY - JOUR AU - Przybylski, M. AU - Putz, B. TI - D* Extra Lite: A dynamic A* with search-tree cutting and frontier-gap repairing JO - International Journal of Applied Mathematics and Computer Science PY - 2017 SP - 273 EP - 290 VL - 27 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_2_a4/ LA - en ID - IJAMCS_2017_27_2_a4 ER -
%0 Journal Article %A Przybylski, M. %A Putz, B. %T D* Extra Lite: A dynamic A* with search-tree cutting and frontier-gap repairing %J International Journal of Applied Mathematics and Computer Science %D 2017 %P 273-290 %V 27 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_2_a4/ %G en %F IJAMCS_2017_27_2_a4
Przybylski, M.; Putz, B. D* Extra Lite: A dynamic A* with search-tree cutting and frontier-gap repairing. International Journal of Applied Mathematics and Computer Science, Tome 27 (2017) no. 2, pp. 273-290. http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_2_a4/
[1] Aine, S. and Likhachev, M. (2016). Truncated incremental search, Artificial Intelligence 234: 49–77.
[2] Belter, D., Łabecki, P., Fankhauser, P. and Siegwart, R. (2016). RGB-D terrain perception and dense mapping for legged robots, International Journal of Applied Mathematics and Computer Science 26(1): 81–97, DOI: 10.1515/amcs-2016-0006.
[3] Hart, P.E., Nilsson, N.J. and Raphael, B. (1968). A formal basis for the heuristic determination of minimum cost paths, IEEE Transactions on Systems Science and Cybernetics 4(2): 100–107.
[4] Hernández, C., Asín, R. and Baier, J.A. (2015). Reusing previously found A* paths for fast goal-directed navigation in dynamic terrain, 19th AAAI Conference on Artificial Intelligence, Austin, TX, USA, pp. 1158–1164.
[5] Hernández, C., Baier, J.A. and Asín, R. (2014). Making A* run faster than D*-Lite for path-planning in partially known terrain, Proceedings of the 24th International Conference on Automated Planning and Scheduling, Portsmouth, NH, USA, pp. 504–508.
[6] Hernández, C., Meseguer, P., Sun, X. and Koenig, S. (2009). Path-Adaptive A* for incremental heuristic search in unknown terrain, Proceedings of the 19th International Conference on Automated Planning and Scheduling, Thessaloniki, Greece, pp. 358–361.
[7] Hernández, C., Sun, X., Koenig, S. and Meseguer, P. (2011). Tree Adaptive A*, 10th International Conference on Autonomous Agents and Multiagent Systems, Taipei, Taiwan, Vol. 1, pp. 123–130.
[8] Koenig, S. and Likhachev, M. (2001). Improved fast replanning for robot navigation in unknown terrain, Technical Report GIT-COGSCI-2002/3, Georgia Institute of Technology, Atlanta, GA.
[9] Koenig, S. and Likhachev, M. (2005a). Adaptive A*, Proceedings of the 4th International Joint Conference on Autonomous Agents and Multiagent Systems, Utrecht, The Netherlands, pp. 1311–1312.
[10] Koenig, S. and Likhachev, M. (2005b). Fast replanning for navigation in unknown terrain, IEEE Transactions on Robotics 21(3): 354–363.
[11] Koenig, S., Likhachev, M. and Furcy, D. (2004). Lifelong planning A*, Artificial Intelligence 155(1): 93–146.
[12] Koenig, S. and Sun, X. (2009). Comparing real-time and incremental heuristic search for real-time situated agents, Autonomous Agents and Multi-Agent Systems 18(3): 313–341.
[13] Likhachev, M., Ferguson, D.I., Gordon, G.J., Stentz, A. and Thrun, S. (2005). Anytime Dynamic A*: An anytime, replanning algorithm, Proceedings of the 15th International Conference on Automated Planning and Scheduling, Monterey, CA, USA, pp. 262–271.
[14] Podsędkowski, L. (1998). Path planner for nonholonomic mobile robot with fast replanning procedure, 1998 IEEE International Conference on Robotics and Automation, Lueven, Belgium, Vol. 4, pp. 3588–3593.
[15] Podsędkowski, L., Nowakowski, J., Idzikowski, M. and Vizvary, I. (2001). A new solution for path planning in partially known or unknown environment for nonholonomic mobile robots, Robotics and Autonomous Systems 34(2): 145–152.
[16] Przybylski, M., Koguciuk, D., Siemiątkowska, B., Harasymowicz-Boggio, B. and Chechliński, Ł. (2015). Integration of qualitative and quantitative spatial data within a semantic map for service robots, in R. Szewczyk et al. (Eds.), Progress in Automation, Robotics and Measuring Techniques. Volume 2: Robotics, Springer, Cham, pp. 223–232.
[17] Przybylski, M. and Siemiątkowska, B. (2012). A new CNN-based method of path planning in dynamic environment, in L. Rutkowski et al. (Eds.), Artificial Intelligence and Soft Computing, ICAISC 2012, Lecture Notes in Computer Science, Vol. 7268, Springer, Berlin/Heidelberg, pp. 484–492.
[18] Stentz, A. (1994). Optimal and efficient path planning for partially-known environments, Proceedings of the 1994 IEEE International Conference on Robotics and Automation, San Diego, CA, USA, Vol. 4, pp. 3310–3317.
[19] Stentz, A. (1995). The Focussed D* algorithm for real-time replanning, Proceedings of the 14th International Joint Conference on Artificial Intelligence, Montreal, Quebec, Canada, Vol. 2, pp. 1652–1659.
[20] Sturtevant, N.R. (2012). Benchmarks for grid-based pathfinding, IEEE Transactions on Computational Intelligence and AI in Games 4(2): 144–148.
[21] Sun, X. and Koenig, S. (2007). The Fringe-Saving A* search algorithm—a feasibility study, Proceedings of the 20th International Joint Conference on Artificial Intelligence, Hyderabad, India, pp. 2391–2397.
[22] Sun, X., Koenig, S. and Yeoh, W. (2008). Generalized Adaptive A*, Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems, Estoril, Portugal, Vol. 1, pp. 469–476.
[23] Trovato, K.I. (1990). Differential A*: An adaptive search method illustrated with robot path planning for moving obstacles and goals, and an uncertain environment, International Journal of Pattern Recognition and Artificial Intelligence 4(2): 245–268.
[24] Trovato, K.I. and Dorst, L. (2002). Differential A*, IEEE Transactions on Knowledge and Data Engineering 14(6): 1218–1229.
[25] van Toll, W. and Geraerts, R. (2015). Dynamically Pruned A* for re-planning in navigation meshes, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, pp. 2051–2057.