Fault detection in nonlinear systems via linear methods
International Journal of Applied Mathematics and Computer Science, Tome 27 (2017) no. 2, pp. 261-272.

Voir la notice de l'article provenant de la source Library of Science

The problem of robust linear and nonlinear diagnostic observer design is considered. A method is suggested to construct the observers that are disturbance decoupled or have minimal sensitivity to the disturbances. The method is based on a logic-dynamic approach which allows us to consider systems with non-differentiable nonlinearities in the state equations by methods of linear algebra.
Keywords: nonlinear dynamic system, diagnostic observer, robustness, nondifferentiable nonlinearity, logic dynamic approach
Mots-clés : układ dynamiczny, układ nieliniowy, obserwator diagnostyczny, odporność na uszkodzenia
@article{IJAMCS_2017_27_2_a3,
     author = {Zhirabok, A. and Shumsky, A. and Solyanik, S. and Suvorov, A.},
     title = {Fault detection in nonlinear systems via linear methods},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {261--272},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_2_a3/}
}
TY  - JOUR
AU  - Zhirabok, A.
AU  - Shumsky, A.
AU  - Solyanik, S.
AU  - Suvorov, A.
TI  - Fault detection in nonlinear systems via linear methods
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2017
SP  - 261
EP  - 272
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_2_a3/
LA  - en
ID  - IJAMCS_2017_27_2_a3
ER  - 
%0 Journal Article
%A Zhirabok, A.
%A Shumsky, A.
%A Solyanik, S.
%A Suvorov, A.
%T Fault detection in nonlinear systems via linear methods
%J International Journal of Applied Mathematics and Computer Science
%D 2017
%P 261-272
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_2_a3/
%G en
%F IJAMCS_2017_27_2_a3
Zhirabok, A.; Shumsky, A.; Solyanik, S.; Suvorov, A. Fault detection in nonlinear systems via linear methods. International Journal of Applied Mathematics and Computer Science, Tome 27 (2017) no. 2, pp. 261-272. http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_2_a3/

[1] Alcorta-Garcia, E. and Frank, P. (1997). Deterministic nonlinear observerbased approach to fault diagnosis: A survey, Control Engineering Practice 5(5): 663–670.

[2] Boulkroune, B., Djemili, I., Aitouche, A., and Cocquempot, V. (2013). Robust nonlinear observer design for actuator fault detection in diesel engines, International Journal of Applied Mathematics and Computer Science 23(3): 557–569, DOI: 10.2478/amcs-2013-0042.

[3] Blanke, M., Kinnaert, M., Lunze, J., and Staroswiecki, M. (2006). Diagnosis and Fault-Tolerant Control, Springer, Berlin.

[4] Caccavale, F. and Villiani, L. (Eds.) (2002). Fault Diagnosis and Tolerance for Mechatronic Systems: Recent Advances, Springer, Berlin.

[5] Ding, S. (2013). Model-Based Fault Diagnosis Techniques—Design Schemes, Algorithms and Tools, 2nd Edn., Springer, London.

[6] Ducard, G.J.J. (2015). SMAC-FDI: A single model active fault detection and isolation system for unmanned aircraft, International Journal of Applied Mathematics and Computer Science 25(1): 189–201, DOI: 10.1515/amcs-2015-0014.

[7] Filaretov V., Vukobratovic M., and Zhirabok A. (2003). Parity relation approach to fault diagnosis in manipulation robots, Mechatronics 13(2): 141–152.

[8] Filaretov, V. and Zhirabok, A. (2006). Logic-dynamic approach to fault diagnosis in mechatronic systems, International Journal of Advanced Robotic Systems 3(4): 285–294.

[9] Frank, P. (1990). Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy—A survey and some new results, Automatica 26(3): 459–474.

[10] Gertler, J. (1993). Residual generation in model-based fault diagnosis, Theory and Advanced Technology 9(1): 259–285.

[11] Low, X. and Willsky, A. and Verghese, G. (1996). Optimally robust redundancy relations for failure detection in uncertain systems, Automatica 22(3): 333–344.

[12] Patton, R. (1994). Robust model-based fault diagnosis: The state of the art, IFAC Symposium SAFEPROCESS’2004, Espoo, Finland, pp. 1–24.

[13] Patton, R., Frank, P. and Clark, R. (2000). Issues of Fault Diagnosis for Dynamic Systems, Springer, London.

[14] Persis, D.C. and Isidori, A. (2001). A geometric approach to nonlinear fault detection and isolation, IEEE Transactions on Automatic Control AC–46(6): 853–865.

[15] Russell, E., Chiang, L., and Chiang, L. (2001). Fault Detection and Diagnosis in Industrial Systems, Springer, Berlin.

[16] Samy, I., Postlethwaite, I. and Gu, D. (2011). Survey and application of sensor fault detection and isolation schemes, Control Engineering Practice 19(5): 658–674.

[17] Schreier, G., Ragot, J., Patton, R., and Frank, F. (1997). Observer design for a class of nonlinear systems, IFAC Symposium SAFEPROCESS’1997, Hull, UK, pp. 498–503.

[18] Simani, S., Fantuzzi, C., and Patton, R. (2002). Model-Based Fault Diagnosis in Dynamic Systems Using Identification, Springer, Berlin.

[19] Shumsky, A. and Zhirabok, A. (2006). Nonlinear diagnostic filter design: Algebraic and geometric points of view, International Journal of Applied Mathematics and Computer Science 16(1): 115–127.

[20] Zhirabok, A. and Usoltsev, S. (2002). Fault diagnosis for nonlinear dynamic systems via linear methods, 15th World Congress IFAC, Barcelona, Spain, (on CD ROM).

[21] Zhirabok, A., Kucher, D., and Filaretov, V. (2010). Achieving robustness at diagnosis of nonlinear systems, Automation and Remote Control 71(1): 142–155.

[22] Zhirabok, A. and Shumsky, A. (2010). Linear methods in observability and controllability of nonlinear systems, 8th IFAC Symposium on Nonlinear Systems, Bologna, Italy, pp. 308–313.

[23] Zhirabok, A. and Shumsky, A. (2013). Logic-dynamic approach to the robust fault diagnosis in nonlinear systems, 2013 Conference on Control and Fault Tolerant Systems, Nice, France, pp. 190–195.