Reduced-order perfect nonlinear observers of fractional descriptor discrete-time nonlinear systems
International Journal of Applied Mathematics and Computer Science, Tome 27 (2017) no. 2, pp. 245-251.

Voir la notice de l'article provenant de la source Library of Science

The purpose of this work is to propose and characterize fractional descriptor reduced-order perfect nonlinear observers for a class of fractional descriptor discrete-time nonlinear systems. Sufficient conditions for the existence of these observers are established. The design procedure of the observers is given and demonstrated on a numerical example.
Keywords: fractional descriptor, nonlinear system, discrete time system, reduced order observer, perfect observer
Mots-clés : układ ułamkowy, układ nieliniowy, układ dyskretny, obserwator doskonały
@article{IJAMCS_2017_27_2_a1,
     author = {Kaczorek, T.},
     title = {Reduced-order perfect nonlinear observers of fractional descriptor discrete-time nonlinear systems},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {245--251},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_2_a1/}
}
TY  - JOUR
AU  - Kaczorek, T.
TI  - Reduced-order perfect nonlinear observers of fractional descriptor discrete-time nonlinear systems
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2017
SP  - 245
EP  - 251
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_2_a1/
LA  - en
ID  - IJAMCS_2017_27_2_a1
ER  - 
%0 Journal Article
%A Kaczorek, T.
%T Reduced-order perfect nonlinear observers of fractional descriptor discrete-time nonlinear systems
%J International Journal of Applied Mathematics and Computer Science
%D 2017
%P 245-251
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_2_a1/
%G en
%F IJAMCS_2017_27_2_a1
Kaczorek, T. Reduced-order perfect nonlinear observers of fractional descriptor discrete-time nonlinear systems. International Journal of Applied Mathematics and Computer Science, Tome 27 (2017) no. 2, pp. 245-251. http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_2_a1/

[1] Cuihong, W. (2012). New delay-dependent stability criteria for descriptor systems with interval time delay, Asian Journal of Control 14(1): 197–206.

[2] Dodig, M. and Stosic, M. (2009). Singular systems state feedbacks problems, Linear Algebra and Its Applications 431(8): 1267–1292.

[3] Dai, L. (1989). Singular Control Systems, Springer, Berlin.

[4] Duan, G.R. (2010). Analysis and Design of Descriptor Linear Systems, Springer, New York, NY.

[5] Fahmy, M.M. and O’Reill, J. (1989). Matrix pencil of closed-loop descriptor systems: Infinite-eigenvalues assignment, International Journal of Control 49(4): 1421–1431.

[6] Gantmacher, F.R. (1959). The Theory of Matrices, Chelsea, London.

[7] Kaczorek, T. (1992). Linear Control Systems, Wiley, New York, NY.

[8] Kaczorek, T. (2001). Full-order perfect observers for continuous-time linear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 49(4): 549–558.

[9] Kaczorek, T. (2004). Infinite eigenvalue assignment by an output feedback for singular systems, International Journal of Applied Mathematics and Computer Science 14(1): 19–23.

[10] Kaczorek, T. (2008). Fractional positive continuous-time linear systems and their reachability, International Journal of Applied Mathematics and Computer Science 18(2): 223–228, DOI: 10.2478/v10006-008-0020-0.

[11] Kaczorek, T. (2011a). Positive linear systems consisting of n subsystems with different fractional orders, IEEE Transaction on Circuits and Systems 58(7): 1203–1210.

[12] Kaczorek, T. (2011b). Selected Problems of Fractional Systems Theory, Springer, Berlin.

[13] Kaczorek, T. (2012a). Checking of the positivity of descriptor linear systems with singular pencils, Archives of Control Sciences 22(1): 77–86.

[14] Kaczorek T. (2012b). Positive fractional continuous-time linear systems with singular pencils, Bulletin of the Polish Academy of Sciences: Technical Sciences 60(1): 9–12.

[15] Kaczorek, T. (2013). Descriptor fractional linear systems with regular pencils, Asian Journal of Control 15(4): 1051–1064.

[16] Kaczorek, T. (2014a). Fractional descriptor observers for fractional descriptor continuous-time linear systems, Archives of Control Sciences 24(1): 27–37.

[17] Kaczorek, T. (2014b). Reduced-order fractional descriptor observers for fractional descriptor continuous-time linear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 62(4): 889–895.

[18] Kaczorek, T. (2015). Perfect observers of fractional descriptor continuous-time linear systems, in K. Latawiec, et al. (Eds.), Advances in Modeling and Control of Non-integer Orders Systems, Springer, Cham, pp. 3–12.

[19] Kaczorek, T. (2016a). Perfect nonlinear observers of descriptor discrete-time nonlinear systems, Asian Journal of Control, (submitted).

[20] Kaczorek, T. (2016b). Perfect nonlinear observers of fractional descriptor continuous-time nonlinear systems, Fractional Calculus and Applied Analysis 19(3): 775–784.

[21] Kaczorek, T. (2016c). Positivity and stability of fractional descriptor time-varying discrete-time linear systems, International Journal of Applied Mathematics and Computer Science 26(1): 5–13, DOI: 10.1515/amcs-2016-0001.

[22] Kaczorek, T. (2016d). Reduced-order fractional descriptor observers for a class of fractional descriptor continuous-time nonlinear systems, International Journal of Applied Mathematics and Computer Science 26(2): 277–283, DOI: 10.1515/amcs-2016-0019.

[23] Kociszewski, R. (2013). Observer synthesis for linear discrete-time systems with different fractional orders, Pomiary Automatyka Robotyka 17(2): 376–381.

[24] Kucera, V. and Zagalak, P. (1988). Fundamental theorem of state feedback for singular systems, Automatica 24(5): 653–658.

[25] Lewis, F.L. (1983). Descriptor systems, expanded descriptor equation and Markov parameters, IEEE Transactions on Automatic Control 28(5): 623–627.

[26] Luenberger, D.G. (1977). Dynamical equations in descriptor form, IEEE Transactions on Automatic Control 22(3): 312–321.

[27] Luenberger, D.G. (1978). Time-invariant descriptor systems, Automatica 14(5): 473–480.

[28] N’Doye, I., Darouach, M., Voos, H. and Zasadzinski, M. (2013). Design of unknown input fractional-order observers for fractional-order systems, International Journal of Applied Mathematics and Computer Science 23(3): 491–500, DOI: 10.2478/amcs-2013-0037.

[29] Oldham, K.B. and Spanier, J. (1974). The Fractional Calculus, Academic Press, New York, NY.

[30] Ostalczyk, P. (2008). Epitome of the Fractional Calculus: Theory and Its Applications in Automatics, Łódź University of Technology Publishing House, Łódź, (in Polish).

[31] Podlubny, I. (1999). Fractional Differential Equations, Academic Press, New York, NY.

[32] Sajewski, Ł (2016). Descriptor fractional discrete-time linear system with two different fractional orders and its solution, Bulletin of the Polish Academy of Sciences: Technical Sciences 64(1): 15–20.

[33] Van Dooren, P. (1979). The computation of Kronecker’s canonical form of a singular pencil, Linear Algebra and Its Applications 27: 103–140.

[34] Vinagre, B.M., Monje, C.A. and Calderon, A.J. (2002). Fractional order systems and fractional order control actions, IEEE Conference on Decision and Control, Las Vegas, NV, USA, pp. 2550–2554.

[35] Virnik, E. (2008). Stability analysis of positive descriptor systems, Linear Algebra and Its Applications 429(10): 2640–2659.