Saturating stiffness control of robot manipulators with bounded inputs
International Journal of Applied Mathematics and Computer Science, Tome 27 (2017) no. 1, pp. 79-90.

Voir la notice de l'article provenant de la source Library of Science

A saturating stiffness control scheme for robot manipulators with bounded torque inputs is proposed. The control law is assumed to be a PD-type controller, and the corresponding Lyapunov stability analysis of the closed-loop equilibrium point is presented. The interaction between the robot manipulator and the environment is modeled as spring-like contact forces. The proper behavior of the closed-loop system is validated using a three degree-of-freedom robotic arm.
Keywords: bounded inputs, robot manipulator, saturation, stiffness control
Mots-clés : wejście ograniczone, manipulator robotyczny, kontrola sztywności
@article{IJAMCS_2017_27_1_a5,
     author = {Rodr{\'\i}guez-Li\~n\'an, M. C. and Mendoza, M. and Bonilla, I. and Ch\'avez-Olivares, C. A.},
     title = {Saturating stiffness control of robot manipulators with bounded inputs},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {79--90},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_1_a5/}
}
TY  - JOUR
AU  - Rodríguez-Liñán, M. C.
AU  - Mendoza, M.
AU  - Bonilla, I.
AU  - Chávez-Olivares, C. A.
TI  - Saturating stiffness control of robot manipulators with bounded inputs
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2017
SP  - 79
EP  - 90
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_1_a5/
LA  - en
ID  - IJAMCS_2017_27_1_a5
ER  - 
%0 Journal Article
%A Rodríguez-Liñán, M. C.
%A Mendoza, M.
%A Bonilla, I.
%A Chávez-Olivares, C. A.
%T Saturating stiffness control of robot manipulators with bounded inputs
%J International Journal of Applied Mathematics and Computer Science
%D 2017
%P 79-90
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_1_a5/
%G en
%F IJAMCS_2017_27_1_a5
Rodríguez-Liñán, M. C.; Mendoza, M.; Bonilla, I.; Chávez-Olivares, C. A. Saturating stiffness control of robot manipulators with bounded inputs. International Journal of Applied Mathematics and Computer Science, Tome 27 (2017) no. 1, pp. 79-90. http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_1_a5/

[1] Aguiñaga-Ruiz, E., Zavala-Río, A., Santibáñez, V. and Reyes, F. (2009). Global trajectory tracking through static feedback for robot manipulators with bounded inputs, IEEE Transactions on Control Systems Technology 17(4): 934–944.

[2] Akdoğan, E. and Adli, M.A. (2011). The design and control of a therapeutic exercise robot for lower limb rehabilitation: Physiotherabot, Mechatronics 21(3): 509–522.

[3] Belter, D., Łabecki, P., Fankhauser, P. and Siegwart, R. (2016). RGB-D terrain perception and dense mapping for legged robots, International Journal of Applied Mathematics and Computer Science 26(1): 81–97, DOI: 10.1515/amcs-2016-0006.

[4] Canudas, C., Siciliano, B. and Bastin, G. (2012). Theory of Robot Control, Springer-Verlag, London.

[5] Caverly, R.J., Zlotnik, D.E., Bridgeman, L.J. and Forbes, J.R. (2014). Saturated proportional derivative control of flexible-joint manipulators, Robotics and Computer-Integrated Manufacturing 30(6): 658–666.

[6] Caverly, R.J., Zlotnik, D.E. and Forbes, J.R. (2016). Saturated control of flexible-joint manipulators using a Hammerstein strictly positive real compensator, Robotica 34(06): 1367–1382.

[7] Chávez-Olivares, C., Reyes, F. and González-Galván, E. (2015). On stiffness regulators with dissipative injection for robot manipulators, International Journal of Advanced Robotic Systems 12(65): 1–15.

[8] Chávez-Olivares, C., Reyes, F., González-Galván, E., Mendoza, M. and Bonilla, I. (2012). Experimental evaluation of parameter identification schemes on an anthropomorphic direct drive robot, International Journal of Advanced Robotic Systems 9(203): 1–18.

[9] Dario, P., Guglielmelli, E. and Allotta, B. (1994). Robotics in medicine, IEEE/RSJ/GI International Conference on Intelligent Robots and Systems: Advanced Robotic Systems and the Real World, IROS’94, Munich, Germany, Vol. 2, pp. 739–752.

[10] Dehghani, S., Taghirad, H. and Darainy,M. (2010). Self-tunning dynamic impedance control for human arm motion, 7th Iranian Conference of Biomedical Engineering (ICBME), Isfahan, Iran, pp. 1–5.

[11] Deneve, A., Moughamir, S., Afilal, L. and Zaytoon, J. (2008). Control system design of a 3-DOF upper limbs rehabilitation robot, Computer Methods and Programs in Biomedicine 89(2): 202–214.

[12] Djebrani, S., Benali, A. and Abdessemed, F. (2012). Modelling and control of an omnidirectional mobile manipulator, International Journal of Applied Mathematics and Computer Science 22(3): 601–616, DOI: 10.2478/v10006-012-0046-1.

[13] Dulęba, I. and Opałka, M. (2013). A comparison of Jacobian-based methods of inverse kinematics for serial robot manipulators, International Journal of Applied Mathematics and Computer Science 23(2): 373–382, DOI: 10.2478/amcs-2013-0028.

[14] Falaki, A. and Towhidkhah, F. (2012). Supervisory model predictive impedance control for human arm movement, 20th Iranian Conference on Electrical Engineering, Tehran, Iran, pp. 1562–1566.

[15] He, W., Dong, Y. and Sun, C. (2016). Adaptive neural impedance control of a robotic manipulator with input saturation, IEEE Transactions on Systems, Man, and Cybernetics: Systems 46(3): 334–344.

[16] Hogan, N. (1985). Impedance control: An approach to manipulation. I: Theory, II: Implementation, III: Applications, ASME Journal of Dynamic Systems, Measurement and Control 107(1): 1–24.

[17] Ju, M.S., Lin, C.C.K., Lin, D.H., Hwang, I.S. and Chen, S.M. (2005). A rehabilitation robot with force-position hybrid fuzzy controller: Hybrid fuzzy control of rehabilitation robot, IEEE Transactions on Neural Systems Rehabilitation Engineering 13(3): 349–358.

[18] Kelly, R., Santibáñez, V. and Berghuis, H. (1997). Point-to-point robot control under actuator constraints, Control Engineering Practice 5(11): 1555–1562.

[19] Kelly, R., Santibáñez, V. and Loría, A. (2005). Control of Robot Manipulators in Joint Space, Springer-Verlag, London.

[20] Khalil, H. (2002). Nonlinear Systems, Prentice Hall, Upper Saddle River, NJ.

[21] Kiguchi, K., Imada, Y. and Liyanaje, M. (2007). EMG-based neuro-fuzzy control of a 4-DOF upper-limb power-assist exoskeleton, 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, pp. 3040–3043.

[22] Kurfess, T. (2004). Robotics and Automation Handbook, CRC Press, Boca Raton, FL.

[23] Li, Y., Ge, S.S., Yang, C., Li, X. and Tee, K.P. (2011). Model-free impedance control for safe human–robot interaction, 2011 IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, pp. 6021–6026.

[24] López-Araujo, D.J., Zavala-Río, A., Santibáñez, V. and Reyes, F. (2013a). A generalized scheme for the global adaptive regulation of robot manipulators with bounded inputs, Robotica 31(7): 1103–1117.

[25] López-Araujo, D.J., Zavala-Río, A., Santibáñez, V. and Reyes, F. (2013b). Output-feedback adaptive control for the global regulation of robot manipulators with bounded inputs, International Journal of Control, Automation, and Systems 11(1): 105–115.

[26] López-Araujo, D. J., Zavala-Río, A., Santibáñez, V. and Reyes, F. (2015). A generalized global adaptive tracking control scheme for robot manipulators with bounded inputs, International Journal of Adaptive Control and Signal Processing 29(2): 180–200.

[27] Mendoza, M., Bonilla, I., Reyes, F. and González-Galván, E. (2012). A Lyapunov-based design tool of impedance controllers for robot manipulators, Kybernetika 48(6): 1136–1155.

[28] Mendoza, M., Zavala-Río, A., Santibáñez, V. and Reyes, F. (2015a). A generalised PID-type control scheme with simple for the global regulation of robot manipulators with tuning constrained inputs, International Journal of Control 88(10): 1995–2012.

[29] Mendoza, M., Zavala-Río, A., Santibáñez, V. and Reyes, F. (2015b). Output-feedback proportional-integral-derivative-type control with simple tuning for the global regulation of robot manipulators with input constraints, IET Control Theory and Applications 9(14): 2097–2106.

[30] Modares, H., Ranatunga, I., Lewis, F.L. and Popa, D.O. (2016). Optimized assistive human–robot interaction using reinforcement learning, IEEE Transactions on Cybernetics 46(3): 655–667.

[31] Santibáñez, V. and Kelly, R. (1996). Global regulation for robot manipulators under SP-SD feedback, 1996 IEEE International Conference on Robotics and Automation (ICRA), Minneapolis, MN, USA, pp. 927–932.

[32] Santibáñez, V., Kelly, R. and Reyes, F. (1998). A new set-point controller with bounded torques for robot manipulators, IEEE Transactions on Industrial Electronics 45(1): 126–133.

[33] Siciliano, B. and Villani, L. (2012). Robot Force Control, Springer-Verlag, London.

[34] Spong, M., Hutchinson, S. and Vidyasagar, M. (2005). Robot Modeling and Control, Wiley, New York, NY.

[35] Volpe, R. and Khosla, P. (1993). A theoretical and experimental investigation of explicit force control strategies for manipulators, IEEE Transactions on Automatic Control 38(11): 1634–1650.

[36] Xu, G., Song, A. and Li, H. (2011). Adaptive impedance control for upper-limb rehabilitation robot using evolutionary dynamic recurrent fuzzy neural network, Journal of Intelligent Robotic Systems 62(3): 501–525.

[37] Yarza, A., Santibanez, V. and Moreno-Valenzuela, J. (2013). An adaptive output feedback motion tracking controller for robot manipulators: Uniform global asymptotic stability and experimentation, International Journal of Applied Mathematics and Computer Science 23(3): 599–611, DOI: 10.2478/amcs-2013-0045.

[38] Zavala-Río, A. and Santibáñez, V. (2006). Simple extensions of the PD-with-gravity-compensation control law for robot manipulators with bounded inputs, IEEE Transactions on Control Systems Technology 14(5): 958–965.

[39] Zavala-Río, A. and Santibáñez, V. (2007). A natural saturating extension of the PD-with-desired-gravity-compensation control law for robot manipulators with bounded inputs, IEEE Transactions on Robotics 23(2): 386–391.