Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2016_26_4_a6, author = {Jauberthie, C. and Trav\'e-Massuy\`es, L. and Verdi\`ere, N.}, title = {Set-membership identifiability of nonlinear models and related parameter estimation properties}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {803--813}, publisher = {mathdoc}, volume = {26}, number = {4}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_4_a6/} }
TY - JOUR AU - Jauberthie, C. AU - Travé-Massuyès, L. AU - Verdière, N. TI - Set-membership identifiability of nonlinear models and related parameter estimation properties JO - International Journal of Applied Mathematics and Computer Science PY - 2016 SP - 803 EP - 813 VL - 26 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_4_a6/ LA - en ID - IJAMCS_2016_26_4_a6 ER -
%0 Journal Article %A Jauberthie, C. %A Travé-Massuyès, L. %A Verdière, N. %T Set-membership identifiability of nonlinear models and related parameter estimation properties %J International Journal of Applied Mathematics and Computer Science %D 2016 %P 803-813 %V 26 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_4_a6/ %G en %F IJAMCS_2016_26_4_a6
Jauberthie, C.; Travé-Massuyès, L.; Verdière, N. Set-membership identifiability of nonlinear models and related parameter estimation properties. International Journal of Applied Mathematics and Computer Science, Tome 26 (2016) no. 4, pp. 803-813. http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_4_a6/
[1] Alamo, T., Bravo, J.M. and Camacho, E.F. (2005). Guaranteed state estimation by zonotopes, Automatica 41(6): 1035–1043.
[2] Auer, E., Kiel, S. and Rauh, A. (2013). A verified method for solving piecewise smooth initial value problems, International Journal of Applied Mathematics and Computer Science 23(4): 731–747, DOI: 10.2478/amcs-2013-0055.
[3] Boulier, F. (1994). Study and Implementation of Some Algorithms in Differential Algebra, Ph.D. thesis, Université des Sciences et Technologie de Lille, Lille.
[4] Bourbaki, N. (1989). Elements of Mathematics, Springer-Verlag, Berlin/Heidelberg.
[5] Braems, I., Jaulin, L., Kieffer, M. and Walter, E. (2001). Guaranteed numerical alternatives to structural identifiability testing, Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, FL, USA, pp. 3122–3127.
[6] Chabert, G. and Jaulin, L. (2009). Contractor programming, Artificial Intelligence 173(11): 1079–1100.
[7] Chiscii, L., Garulli, A. and Zappa, G. (1996). Recursive state bounding by parallelotopes, Automatica 32(7): 1049–1055.
[8] Denis-Vidal, L., Joly-Blanchard, G. and Noiret, C. (2001a). Some effective approaches to check identifiability of uncontrolled nonlinear systems, Mathematics and Computers in Simulation 57(1–2): 35–44.
[9] Denis-Vidal, L., Joly-Blanchard, G., Noiret, C. and Petitot, M. (2001b). An algorithm to test identifiability of non-linear systems, Proceedings of the 5th IFAC Symposium on Nonlinear Control Systems, St. Petersburg, Russia, Vol. 7, pp. 174–178.
[10] Herrero, P., Delaunay, B., Jaulin, L., Georgiou, P., Oliver, N. and Toumazou, C. (2016). Robust set-membership parameter estimation of the glucose minimal model, International Journal of Adaptive Control and Signal Processing 30(2): 173–185.
[11] Jauberthie, C., Verdi`ere, N. and Travé-Massuyès, L. (2011). Set-membership identifiability: Definitions and analysis, Proceedings of the 18th IFAC World Congress, Milan, Italy, pp. 12024–12029.
[12] Jauberthie, C., Verdière, N. and Travé-Massuyès, L. (2013). Fault detection and identification relying on set-membership identifiability, Annual Reviews in Control 37(1): 129–136.
[13] Jaulin, L., Kieffer, M., Didrit, O. and Walter, E. (2001). Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics, Springer, Londres.
[14] Jaulin, L. and Walter, E. (1993). Set inversion via interval analysis for nonlinear bounded-error estimation, Automatica 29(4): 1053–1064.
[15] Kieffer, M., Jaulin, L. and Walter, E. (2002). Guaranteed recursive nonlinear state bounding using interval analysis, International Journal of Adaptive Control and Signal Processing 6(3): 193–218.
[16] Kieffer, M., Jaulin, L.,Walter, É. and Meizel, D. (2000). Robust autonomous robot localization using interval analysis, Reliable Computing 6(3): 337–362.
[17] Kieffer, M. and Walter, E. (2011). Guaranteed estimation of the parameters of nonlinear continuous-time models: Contributions of interval analysis, International Journal of Adaptive Control and Signal Processing 25(3): 191–207.
[18] Kolchin, E. (1973). Differential Algebra and Algebraic Groups, Academic Press, New York, NY.
[19] Kurzhanski, A.B. and Valyi, I. (1997). Ellipsoidal Calculus for Estimation and Control, Nelson Thornes, Birkhäuser.
[20] Lagrange, S., Delanoue, N. and Jaulin, L. (2008). Injectivity analysis using interval analysis: Application to structural identifiability, Automatica 44(11): 2959–2962.
[21] Ljung, L. and Glad, T. (1994). On global identifiability for arbitrary model parametrizations, Automatica 30(2): 265–276.
[22] Maiga, M., Ramdani, N. and Travé-Massuyès, L. (2013). A fast method for solving guard set intersection in nonlinear hybrid reachability, Proceedings of the 52nd IEEE Conference on Decision and Control, CDC 2013, Firenze, Italy, pp. 508–513.
[23] Maiga, M., Ramdani, N., Travé-Massuyès, L. and Combastel, C. (2016). A comprehensive method for reachability analysis of uncertain nonlinear hybrid systems, IEEE Transactions on Automatic Control 61(9): 2341–2356, DOI:10.1109/TAC.2015.2491740.
[24] Milanese, M., Norton, J., Piet-Lahanier, H. and Walter, É. (2013). Bounding Approaches to System Identification, Springer Science Business Media, New York, NY.
[25] Munkres, J.R. (1975). Topology—A First Course, Prentice Hall, Upper Saddle River, NJ.
[26] Nelles, O. (2002). Nonlinear System Identification, Springer-Verlag, Berlin/Heidelberg.
[27] Pohjanpalo, H. (1978). System identifiability based on the power series expansion of the solution, Mathematical Biosciences 41(1): 21–33.
[28] Puig, V. (2010). Fault diagnosis and fault tolerant control using set-membership approaches: Application to real case studies, International Journal of Applied Mathematics and Computer Science 20(4): 619–635, DOI: 10.2478/v10006-010-0046-y.
[29] Raïssi, T., Ramdani, N. and Candau, Y. (2004). Set-membership state and parameter estimation for systems described by nonlinear differential equations, Automatica 40(10): 1771–1777.
[30] Ravanbod, L., Verdière, N. and Jauberthie, C. (2014). Determination of set-membership identifiability sets, Mathematics in Computer Science 8(3–4): 391–406.
[31] Seybold, L., Witczak, M., Majdzik, P. and Stetter, R. (2015). Towards robust predictive fault-tolerant control for a battery assembly system, International Journal of Applied Mathematics and Computer Science 25(4): 849–862, DOI: 10.1515/amcs-2015-0061.