Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2016_26_4_a0, author = {Feldhusen, K. and Deiterding, R. and Wagner, C.}, title = {A dynamically adaptive lattice {Boltzmann} method for thermal convection problems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {735--747}, publisher = {mathdoc}, volume = {26}, number = {4}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_4_a0/} }
TY - JOUR AU - Feldhusen, K. AU - Deiterding, R. AU - Wagner, C. TI - A dynamically adaptive lattice Boltzmann method for thermal convection problems JO - International Journal of Applied Mathematics and Computer Science PY - 2016 SP - 735 EP - 747 VL - 26 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_4_a0/ LA - en ID - IJAMCS_2016_26_4_a0 ER -
%0 Journal Article %A Feldhusen, K. %A Deiterding, R. %A Wagner, C. %T A dynamically adaptive lattice Boltzmann method for thermal convection problems %J International Journal of Applied Mathematics and Computer Science %D 2016 %P 735-747 %V 26 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_4_a0/ %G en %F IJAMCS_2016_26_4_a0
Feldhusen, K.; Deiterding, R.; Wagner, C. A dynamically adaptive lattice Boltzmann method for thermal convection problems. International Journal of Applied Mathematics and Computer Science, Tome 26 (2016) no. 4, pp. 735-747. http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_4_a0/
[1] Abdelhadi, B., Hamza, G., Razik, B. and Raouache, E. (2006). Natural convection and turbulent instability in cavity, WSEAS Transactions on Heat and Mass Transfer 1(2): 179–184.
[2] Alexander, F.J., Chen, S. and Sterling, J.D. (1993). Lattice Boltzmann thermohydrodynamics, Physical Review E 47: 2249–2252.
[3] Azwadi Che Sidik, N. and Irwan, M. (2010). Simplified mesoscale lattice Boltzmann numerical model for prediction of natural convection in a square enclosure filled with homogeneous porous media, WSEAS Transactions on Fluid Mechanics 3(5): 186–195.
[4] Azwadi Che Sidik, N. and Syahrullail, S. (2009). A three-dimension double-population thermal lattice BGK model for simulation of natural convection heat transfer in a cubic cavity, WSEAS Transactions on Mathematics 8(9): 561–571.
[5] Berger, M. and Colella, P. (1988). Local adaptive mesh refinement for shock hydrodynamics, Journal of Computational Physics 82(1): 64–84.
[6] Bhatnagar, P., Gross, E. and Krook, M. (1954). A model for collisional processes in gases, I: Small amplitude processes in charged and in neutral one-component systems, Physical Review 94(3): 511–525.
[7] Bouzidi, M., Firdaouss, M. and Lallemand, P. (2001). Momentum transfer of a Boltzmann-lattice fluid with boundaries, Physics of Fluids 13(11): 3452–3459.
[8] Chen, H., Filippova, O., Hoch, J., Molvig, K., Shock, R., Teixeira, C. and Zhang, R. (2006). Grid refinement in lattice Boltzmann methods based on volumetric formulation, Physica A 362(1): 158–167.
[9] Chen, H. and Teixeira, C. (2000). H-theorem and origins of instability in thermal lattice Boltzmann models, Computer Physics Communications 129(1): 21–31.
[10] Chen, S. and Doolen, G. (1998). Lattice Boltzmann method for fluid flows, Annual Review of Fluid Mechanics 30: 329–364.
[11] Coutanceau, M. and Menard, C. (1985). Influence of rotation on the near-wake development behind an impulsively started circular cylinder, Journal of Fluid Mechanics 158: 399–446.
[12] De Vahl Davis, G. (1983). Natural convection of air in a square cavity a benchmark numerical solution, International Journal for Numerical Methods in Fluids 3(3): 249–264.
[13] Deiterding, R. (2011). Block-structured adaptive mesh refinement—theory, implementation and application, ESAIM Proceedings 34: 97–150.
[14] Deller, P. (2002). Lattice kinetic schemes for magnetohydrodynamics, Journal of Computational Physics 179(1): 95–126.
[15] Dupuis, A. and Chopard, B. (2003). Theory and applications of an alternative lattice Boltzmann grid refinement algorithm, Physica E 67: 066707.
[16] Fusegi, T., Hyun, J., Kuwahara, K. and Farouk, B. (1991). A numerical study of three-dimensional natural convection in a differentially heated cubical enclosure, International Journal of Heat and Mass Transfer 34(6): 1543–1557.
[17] Guo, Z., Shi, B. and Zheng, C. (2002). A coupled lattice BGK model for the Boussinesq equations, International Journal for Numerical Methods in Fluids 39(4): 325–342.
[18] Hähnel, D. (2004). Molekulare Gasdynamik, Springer, Heidelberg.
[19] He, N.-Z., Wang, N.-C., Shi, B.-C. and Guo, Z.-L. (2004). A unified incompressible lattice BGK model and its application to three-dimensional lid-driven cavity flow, Chinese Physics 13(1): 40–46.
[20] He, X., Chen, S. and Doolen, G. (1998). A novel thermal model for the lattice Boltzmann method in incompressible limit, Journal of Computational Physics 146(1): 282–300.
[21] He, X. and Luo, L.-S. (1997). Lattice Boltzmann model for the incompressible Navier–Stokes equation, Journal of Statistical Physics 88(3): 927–944.
[22] Jonas, L., Chopard, B., Succi, S. and Toschi, F. (2006). Numerical analysis of the average flow field in a turbulent lattice Boltzmann simulation, Physica A 32(1): 6–10.
[23] Kuznik, F., Vareilles, J., Rusaouen, G. and Kraiss, G. (2007). A double-population lattice Boltzmann method with non-uniform mesh for the simulation of natural convection in a square cavity, International Journal of Heat and Fluid Flow 28(5): 862–870.
[24] Lai, H. and Yan, Y. (2001). The effect of choosing dependent variables and cell-face velocities on convergence of the SIMPLE algorithm using non-orthohonal grids, International Journal of Numerical Methods for Heat Fluid Flow 11(6): 524–546.
[25] Lee, T. and Lin, C. (2005). A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio, Journal of Computational Physics 206(1): 16–47.
[26] Li, L., Mei, R. and Klausner, J. (2013). Boundary conditions for thermal lattice Boltzmann equation method, Journal of Computational Physics 237(1): 366–395.
[27] McNamara, G. and Alder, B. (1993). Analysis of lattice Boltzmann treatment of hydrodynamics, Physica A 194(1): 218–228.
[28] Mohamad, A. (2011). Lattice Boltzmann Method—Fundamentals and Engineering Applications with Computer Codes, Springer, London.
[29] Mohamad, A. and Kuzmin, A. (2010). A critical evaluation of force term in lattice Boltzmann method, natural convection problem, International Journal of Heat and Mass Transfer 53: 990–996.
[30] Peng, Y., Shu, C. and Che, Y. (2003). A 3D incompressible thermal lattice Boltzman model and its application to simulation natural convection in a cubic cavity, Journal of Computational Physics 193(1): 260–274.
[31] Qian, Y. (1993). Simulating thermohydrodynamics with lattice BGK models, Journal of Scientific Computing 8(3): 231–241.
[32] Qian, Y., D’Humires, D. and Lallemand, P. (1992). Lattice BGK models for Navier–Stokes equation, Europhysics Letters 17(6): 479–484.
[33] Succi, S. (2001). The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond, Numerical Mathematics and Scientific Computation, Clarendon Press, Oxford.
[34] Yan, Y. and Zu, Y. (2008). Numerical simulation of heat transfer and fluid flow past a rotating isothermal cylinder—A LBM approach, International Journal of Heat and Mass Transfer 51(9–10): 2519–2536.
[35] Yu, Z. and Fan, L.-S. (2009). An interaction potential based lattice Boltzmann method with adaptive mesh refinement (AMR) for two-phase flow simulation, Journal of Computational Physics 230(17): 6456–6478.