Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2016_26_3_a2, author = {Amairi, M.}, title = {Recursive set membership estimation for output-error fractional models with unknown-but-bounded errors}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {543--553}, publisher = {mathdoc}, volume = {26}, number = {3}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_3_a2/} }
TY - JOUR AU - Amairi, M. TI - Recursive set membership estimation for output-error fractional models with unknown-but-bounded errors JO - International Journal of Applied Mathematics and Computer Science PY - 2016 SP - 543 EP - 553 VL - 26 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_3_a2/ LA - en ID - IJAMCS_2016_26_3_a2 ER -
%0 Journal Article %A Amairi, M. %T Recursive set membership estimation for output-error fractional models with unknown-but-bounded errors %J International Journal of Applied Mathematics and Computer Science %D 2016 %P 543-553 %V 26 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_3_a2/ %G en %F IJAMCS_2016_26_3_a2
Amairi, M. Recursive set membership estimation for output-error fractional models with unknown-but-bounded errors. International Journal of Applied Mathematics and Computer Science, Tome 26 (2016) no. 3, pp. 543-553. http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_3_a2/
[1] Amairi, M. (2015). Recursive set-membership parameter estimation using fractional model, Circuits, Systems, and Signal Processing 34(12): 3757–3788.
[2] Amairi, M., Aoun, M., Najar, S. and Abdelkrim, M.N. (2012). Guaranteed frequency-domain identification of fractional order systems: Application to a real system, International Journal of Modelling, Identification and Control 17(1): 32–42.
[3] Amairi, M., Najar, S., Aoun, M. and Abdelkrim, M. (2010). Guaranteed output-error identification of fractional order model, 2nd IEEE International Conference on Advanced Computer Control (ICACC), Shenyang, China, pp. 246–250.
[4] Busłowicz, M. and Ruszewski, A. (2015). Robust stability check of fractional discrete-time linear systems with interval uncertainties, in K.J. Latawiec et al. (Eds.), Advances in Modelling and Control of Non-Integer-Order Systems, Springer, Berlin/Heidelberg, pp. 199–208.
[5] Clement, T. and Gentil, S. (1988). Reformulation of parameter identification with unknown-but-bounded errors, Mathematics and Computers in Simulation 30(3): 257–270.
[6] Ferreres, G. and M’Saad, M. (1997). Estimation of output error models in the presence of unknown but bounded disturbances, International Journal of Adaptive Control and Signal Processing 11(2): 115–140.
[7] Fogel, E. and Huang, Y. (1982). On the value of information in system identification-bounded noise case, Automatica 18(2): 229–238.
[8] Machado, J.T., Kiryakova, V. and Mainardi, F. (2011). Recent history of fractional calculus, Communications in Nonlinear Science and Numerical Simulation 16(3): 1140–1153.
[9] Malti, R., Raȉssi, T., Thomassin, M. and Khemane, F. (2010). Set membership parameter estimation of fractional models based on bounded frequency domain data, Communications in Nonlinear Science and Numerical Simulation 15(4): 927–938.
[10] Matignon, D. (1996). Stability results for fractional differential equations with applications to control processing, Computational Engineering in Systems Applications, Lille, France, Vol. 2, pp. 963–968.
[11] Milanese, M., Norton, J., Piet-Lahanier, H. and Walter, E. (1996). Bounding Approaches to System Identification, Plenum Press, London.
[12] Narang, A., Shah, S. and Chen, T. (2011). Continuous-time model identification of fractional-order models with time delays, Control Theory Applications 5(7): 900–912.
[13] Ostalczyk, P. (2012). Equivalent descriptions of a discrete-time fractional-order linear system and its stability domains, International Journal of Applied Mathematics and Computer Science 22(3): 533–538, DOI: 10.2478/v10006-012-0040-7.
[14] Polyak, B.T., Nazin, S.A., Durieu, C. and Walter, E. (2004). Ellipsoidal parameter or state estimation under model uncertainty, Automatica 40(7): 1171–1179.
[15] Raissi, T., Ramdani, N. and Candau, Y. (2004). Set membership state and parameter estimation for systems described by nonlinear differential equations, Automatica 40(10): 1771–1777.
[16] Samko, S., Kilbas, A. and Marichev, O. (1993). Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, New York, NY.
[17] Victor, S., Malti, R., Garnier, H., Oustaloup, A. (2013). Parameter and differentiation order estimation in fractional models, Automatica 49(4): 926–935.
[18] Yakoub, Z., Chetoui, M., Amairi, M. and Aoun, M. (2015). A bias correction method for fractional closed-loop system identification, Journal of Process Control 33: 25–36.