Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2016_26_2_a9, author = {Atencia, I.}, title = {A discrete-time queueing system with changes in the vacation times}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {379--390}, publisher = {mathdoc}, volume = {26}, number = {2}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_2_a9/} }
TY - JOUR AU - Atencia, I. TI - A discrete-time queueing system with changes in the vacation times JO - International Journal of Applied Mathematics and Computer Science PY - 2016 SP - 379 EP - 390 VL - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_2_a9/ LA - en ID - IJAMCS_2016_26_2_a9 ER -
Atencia, I. A discrete-time queueing system with changes in the vacation times. International Journal of Applied Mathematics and Computer Science, Tome 26 (2016) no. 2, pp. 379-390. http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_2_a9/
[1] Alfa, A. (2010). Queueing Theory for Telecommunications 1: Discrete Time Modelling of a Single Node System, Springer, New York, NY.
[2] Artalejo, J. (2000). G-networks: A versatile approach for work removal in queueing networks, European Journal of Operational Research 126(2): 233–249.
[3] Atencia, I. (2014). A discrete-time system with service control and repairs, International Journal of Applied Mathematics and Computer Science 24(3): 471–484, DOI: 10.2478/amcs-2014-0035.
[4] Atencia, I. (2015). A discrete-time system queueing system with server breakdowns and changes in the repair times, Annals of Operations Research 235(1): 37–49.
[5] Atencia, I. and Moreno, P. (2004). The discrete-time Geo/Geo/1 queue with negative customers and disasters, Computers and Operations Research 31(9): 1537–1548.
[6] Atencia, I. and Moreno, P. (2005). A single-server G-queue in discrete-time with geometrical arrival and service process, Performance Evaluation 59(1): 85–97.
[7] Bocharov, P.P., D’Apice, C., Pechinkin, A.V. and Salerno, S. (2004). Queueing Theory: Modern Probability and Statistics, VSP, Utrecht/Boston, MA.
[8] Bruneel, H. and Kim, B. (1993). Discrete-time Models for Communication Systems Including ATM, Kluwer Academic Publishers, New York, NY.
[9] Brush, A., Bongshin, L., Ratul, M., Sharad, A., Stefan, S. and Colin, D. (2011). Home automation in the wild: Challenges and opportunities, ACM Conference on Computer-Human Interaction, Vancouver, Canada, pp. 2115–2124.
[10] Cascone, A., Manzo, P., Pechinkin, A. and Shorgin, S. (2011). A Geom/G/1/n system with LIFO discipline without interrupts and constrained total amount of customers, Automation and Remote Control 72(1): 99–110.
[11] Chao, X., Miyazawa, M. and Pinedo, M. (1999). Queueing Networks: Customers, Signals and Product Form Solutions, John Wiley and Sons, Chichester.
[12] Cooper, R. (1981). Introduction to Queueing Theory, 2nd Edn., North-Holland, New York, NY.
[13] Fiems, D. and Bruneel, H. (2013). Discrete-time queueing systems with Markovian preemptive vacations, Mathematical and Computer Modelling 57(3–4): 782–792.
[14] Fiems, D., Steyaert, B. and Bruneel, H. (2002). Randomly interrupted GI/G/1 queues: Service strategies and stability issues, Annals of Operations Research 112(1): 171–183.
[15] Gelenbe, E. and Labed, A. (1998). G-networks with multiple classes of signals and positive customers, European Journal of Operational Research 108(1): 293–305.
[16] Guzmán-Navarro, F. and Merino-Córdoba, S. (2015). Gesti´on de la energía y gestión técnica de edificios, 1st Edn., RA-MA, Málaga.
[17] Harrison, P.G., Patel, N.M. and Pitel, E. (2000). Reliability modelling using G-queues, European Journal of Operational Research 126(2): 273–287.
[18] Hochendoner, P., Curtis, O. and Mather, W.H. (2014). A queueing approach to multi-site enzyme kinetics, Interface Focus 4(3): 1–9, DOI: 10.1098/rsfs.2013.0077.
[19] Hunter, J. (1983). Mathematical Techniques of Applied Probability, Academic Press, New York, NY.
[20] Kim, T., Bauer, L., Newsome, J., Perrig, A. and Walker, J. (2010). Challenges in access right assignment for secure home networks, HotSec 2010, CA, USA, pp. 1–6.
[21] Kleinrock, L. (1976). Queueing Theory, John Wiley and Sons, New York, NY.
[22] Krishnamoorthy, A., Gopakumar, B. and Viswanath Narayanan, V. (2012). A retrial queue with server interruptions, resumption and restart of service, Operations Research International Journal 12(2): 133–149.
[23] Krishnamoorthy, A., Pramod, P. and Chakravarthy, S. (2013). A note on characterizing service interruptions with phase-type distribution, Journal of Stochastic Analysis and Applications 31(4): 671–683.
[24] Krishnamoorthy, A., Pramod, P. and Chakravarthy, S. (2014). A survey on queues with interruptions, TOP 22(1): 290–320.
[25] Lakatos, L., Szeidl, L. and Telek, M. (2013). Introduction to Queueing Systems with Telecommunication Applications, Springer, New York, NY.
[26] Lucero, S. and Burden, K. (2010). Home Automation and Control, ABI Research, New York, NY.
[27] Meykhanadzhyan, L.A., Milovanova, T.A., Pechinkin, A.V. and Razumchik, R.V. (2014). Stationary distribution in a queueing system with inverse service order and generalized probabilistic priority, Informatika Primenenia 8(3): 28–38, (in Russian).
[28] Milovanova, T.A. and Pechinkin, A.V. (2013). Stationary characteristics of the queueing system with LIFO service, probabilistic priority, and hysteric policy, Informatika Primenenia 7(1): 22–35, (in Russian).
[29] Moreno, P. (2006). A discrete-time retrial queue with unreliable server and general service lifetime, Journal of Mathematical Sciences 132(5): 643–655.
[30] Oliver, C.I. and Olubukola, A.I. (2014). M/M/1 multiple vacation queueing systems with differentiated vacations, Modelling and Simulation in Engineering 2014(1): 1–6.
[31] Park, H.M., Yang, W.S. and Chae, K.C. (2009). The Geo/G/1 queue with negative customers and disasters, Stochastic Models 25(4): 673–688.
[32] Pechinkin, A. and Svischeva, T. (2004). The stationary state probability in the BMAP/G/1/r queueing system with inverse discipline and probabilistic priority, 24th International Seminar on Stability Problems for Stochastic Models, Jurmala, Latvia, pp. 141–174.
[33] Piórkowski, A. and Werewka, J. (2010). Minimization of the total completion time for asynchronous transmission in a packet data-transmission system, International Journal of Applied Mathematics and Computer Science 20(2): 391–400, DOI: 10.2478/v10006-010-0029-z.
[34] Takagi, H. (1993). Queueing analysis: A Foundation of Performance Evaluation, Discrete-Time Systems, North-Holland, Amsterdam.
[35] Tian, N. and Zhang, Z. (2002). The discrete-time GI/Geo/1 queue with multiple vacations, Queueing Systems 40(3): 283–294.
[36] Tian, N. and Zhang, Z. (2006). Vacation Queueing Models: Theory and Applications, Springer, New York, NY.
[37] Walraevens, J., Steyaert, B. and Bruneel, H. (2006). A preemptive repeat priority queue with resampling: Performance analysis, Annals of Operations Research 146(1): 189–202.
[38] Wieczorek, R. (2010). Markov chain model of phytoplankton dynamics, International Journal of Applied Mathematics and Computer Science 20(4): 763–771, DOI: 10.2478/v10006-010-0058-7.
[39] Woodward, M.E. (1994). Communication and Computer Networks: Modelling with Discrete-Time Queues, IEEE Computer Society, London.
[40] Xeung, W., Jin, D., Dae, W. and Kyung, C. (2007). The Geo/G/1 queue with disasters and multiple working vacations, Stochastic Models 23(4): 537–549.