Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2016_26_2_a15, author = {Siwek, K. and Osowski, S.}, title = {Data mining methods for prediction of air pollution}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {467--478}, publisher = {mathdoc}, volume = {26}, number = {2}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_2_a15/} }
TY - JOUR AU - Siwek, K. AU - Osowski, S. TI - Data mining methods for prediction of air pollution JO - International Journal of Applied Mathematics and Computer Science PY - 2016 SP - 467 EP - 478 VL - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_2_a15/ LA - en ID - IJAMCS_2016_26_2_a15 ER -
Siwek, K.; Osowski, S. Data mining methods for prediction of air pollution. International Journal of Applied Mathematics and Computer Science, Tome 26 (2016) no. 2, pp. 467-478. http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_2_a15/
[1] Agirre-Basurko, E., Ibarra-Berastegi, G. and Madriaga, I. (2006). Regression and multilayer perceptron-based models for forecast hourly O3 and nO2 levels in the Bilbao area, Environmental Modelling and Software 21(4): 430–446.
[2] Bhanu, B. and Lin, Y. (2003). Genetic algorithm based feature selection for target detection in SAR images, Image and Vision Computing 21(4): 591–608.
[3] Breiman, L. (2001). Random forests, Machine Learning 45(11): 5–32.
[4] Brunelli, U., Piazza, V., Pignato, L. and Sorbello, F. and Vitabile, S. (2007). Two-day ahead prediction of daily maximum concentrations of SO2, O3, PM10, NO2, CO in urban area of Palermo, Italy, Atmospheric Environment 41(14): 2967–2995.
[5] Cloete, I. and Zurada, J. (2000). Knowledge-based Neurocomputing, MIT Press, Cambridge, MA.
[6] Goldberg, D. (2013). Genetic Algorithms in Search, Optimization, and Machine Learning, Pearson Education, Upper Saddle River, NJ.
[7] Grivas, G. and Chaloulakou, A. (2006). Artificial neural network models for predictions of PM10 hourly concentrations in greater area of Athens, Atmospheric Environment 40(7): 1216–1229.
[8] Guyon, I. and Elisseeff, A. (2003). An introduction to variable and feature selection, Journal of Machine Learning Research 3(1): 1158–1182.
[9] Haykin, S. (2000). Neural Networks. A Comprehensive Foundation, 2nd Edition, Prentice-Hall, Englewood Cliffs, NJ.
[10] Matlab (2014). Matlab User Manual—Statistics Toolbox, MathWorks, Natic, MA.
[11] Mesin, L., Taormina, R. and Pasero, E. (2010). A feature selection method for air quality forecasting, Proceedings of the International Conference on Artificial Neural Networks, Thessaloniki, Greece, pp. 489–494.
[12] Osowski, S., Siwek, K. and Szupiluk, R. (2009). Ensemble neural network approach for accurate load forecasting in a power system, International Journal of Applied Mathematics and Computer Science 19(2): 303–315, DOI: 10.2478/v10006-009-0026-2.
[13] Perez, P. and Trier, A. (2001). Prediction of NO and NO2 concentrations near a street with heavy traffic in Santiago, Chile, Atmospheric Environment 35(21): 1783–1789.
[14] Scholkopf, B. and Smola, A. (2002). Learning with Kernels, MIT Press, Cambridge, MA.
[15] Siwek, K., Osowski, S. and Sowiński, M. (2010). Neural predictor ensemble for accurate forecasting of PM10 pollution, Proceedings of the International Joint Conference on Neural Networks, Barcelona, Spain, pp. 1–7.
[16] Siwek, K., Osowski, S. and Sowiński, M. (2011). Evolving the ensemble of predictors model for forecasting the daily average PM10, International Journal of Environment and Pollution 46(3/4): 199–215.
[17] Sprent, P. and Smeeton, N. (2007). Applied Nonparametric Statistical Methods, Chapman and Hall/CRC, Boca Raton, FL.
[18] Sumi, S.M., Zaman, M.F. and Hirose, H. (2012). A rainfall forecasting method using machine learning models and its application to the Fukuoka city case, International Journal of Applied Mathematics and Computer Science 22(4): 841–854, DOI: 10.2478/v10006-012-0062-1.
[19] Tan, P.N., Steinbach, M. and Kumar, V. (2006). Introduction to Data Mining, Pearson Education, Boston, MA.
[20] Vafaie, H. and De Jong, K. (1992). Genetic algorithms as a tool for feature selection in machine learning, Proceedings of the 4th International Conference on Tools with Artificial Intelligence, Arlington, VA, USA, pp. 1–6.
[21] Zhang, T. (2009). Adaptive forward-backward greedy algorithm for sparse learning with linear models, in D. Koller et al. (Eds.), NIPS: Proceedings of Neural Information Processing Systems, MIT Press, Cambridge, MA, pp. 1921–1928.