Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2016_26_2_a1, author = {Kaczorek, T.}, title = {Reduced-order fractional descriptor observers for a class of fractional descriptor continuous-time nonlinear systems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {277--283}, publisher = {mathdoc}, volume = {26}, number = {2}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_2_a1/} }
TY - JOUR AU - Kaczorek, T. TI - Reduced-order fractional descriptor observers for a class of fractional descriptor continuous-time nonlinear systems JO - International Journal of Applied Mathematics and Computer Science PY - 2016 SP - 277 EP - 283 VL - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_2_a1/ LA - en ID - IJAMCS_2016_26_2_a1 ER -
%0 Journal Article %A Kaczorek, T. %T Reduced-order fractional descriptor observers for a class of fractional descriptor continuous-time nonlinear systems %J International Journal of Applied Mathematics and Computer Science %D 2016 %P 277-283 %V 26 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_2_a1/ %G en %F IJAMCS_2016_26_2_a1
Kaczorek, T. Reduced-order fractional descriptor observers for a class of fractional descriptor continuous-time nonlinear systems. International Journal of Applied Mathematics and Computer Science, Tome 26 (2016) no. 2, pp. 277-283. http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_2_a1/
[1] Cuihong, W. (2012). New delay-dependent stability criteria for descriptor systems with interval time delay, Asian Journal of Control 14(1): 197–206.
[2] Dodig, M. and Stosic, M. (2009). Singular systems state feedbacks problems, Linear Algebra and Its Applications 431(8): 1267–1292.
[3] Dai, L. (1989). Singular Control Systems, Lecture Notes in Control and Information Sciences, Vol. 118, Springer-Verlag, Berlin.
[4] Fahmy, M.M. and O’Reill, J. (1989). Matrix pencil of closed-loop descriptor systems: Infinite-eigenvalue assignment, International Journal of Control 49(4): 1421–1431.
[5] Gantmacher, F.R. (1960). The Theory of Matrices, Chelsea Publishing Co., New York, NY.
[6] Guang-ren, D. (2010). Analysis and Design of Descriptor Linear Systems, Springer, New York, NY.
[7] Kaczorek, T. (1992). Linear Control Systems, Vol. 1, Research Studies Press, J. Wiley, New York, NY.
[8] Kaczorek, T. (2001). Full-order perfect observers for continuous-time linear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 49(4).
[9] Kaczorek, T. (2004). Infinite eigenvalue assignment by an output feedback for singular systems, International Journal of Applied Mathematics and Computer Science 14(1): 19–23.
[10] Kaczorek, T. (2008). Fractional positive continuous-time linear systems and their reachability, International Journal of Applied Mathematics and Computer Science 18(2): 223–228, DOI: 10.2478/v10006-008-0020-0.
[11] Kaczorek, T. (2011a). Positive linear systems consisting of n subsystems with different fractional orders, IEEE Transactions on Circuits and Systems 58(7): 1203–1210.
[12] Kaczorek, T. (2011b). Selected Problems of Fractional Systems Theory, Springer-Verlag, Berlin.
[13] Kaczorek, T. (2012a). Checking of the positivity of descriptor linear systems with singular pencils, Archive of Control Sciences 22(1): 77–86.
[14] Kaczorek, T. (2012b). Positive fractional continuous-time linear systems with singular pencils, Bulletin of the Polish Academy of Sciences: Technical Sciences 60(1): 9–12.
[15] Kaczorek, T. (2013). Descriptor fractional linear systems with regular pencils, Asian Journal of Control 15(4): 1051–1064.
[16] Kaczorek, T. (2014a). Fractional descriptor observers for fractional descriptor continuous-time linear system, Archives of Control Sciences 24(1): 5–15.
[17] Kaczorek, T. (2014b). Reduced-order fractional descriptor observers for fractional descriptor continuous-time linear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 62(4): 889–895.
[18] Kaczorek, T. (2015). Prefect observers of fractional descriptor continuous-time linear systems, in K.J. Latawiec et al. (Eds.), Advances in Modeling and Control of Non-integer orders Systems, Lecture Notes in Electrical Engineering, Vol. 320, Springer, Berlin/Heidelberg, pp. 5–12.
[19] Kociszewski, R. (2013). Observer synthesis for linear discrete-time systems with different fractional orders, Pomiary Automatyka Robotyka (2): 376–381, (on CD-ROM).
[20] Kucera, V. and Zagalak, P. (1988). Fundamental theorem of state feedback for singular systems, Automatica 24(5): 653–658.
[21] Lewis, F.L. (1983). Descriptor systems, expanded descriptor equation and Markov parameters, IEEE Transactions on Automatic Control AC-28(5): 623–627.
[22] Luenberger, D.G. (1977). Dynamical equations in descriptor form, IEEE Transactions on Automatic Control AC-22(3): 312–321.
[23] Luenberger, D.G. (1978). Time-invariant descriptor systems, Automatica 14(5): 473–480.
[24] Matignon, D. (1996). Stability result on fractional differential equations with applications to control processing, IMACSSMC Proceedings, Lille, France, pp. 963–968.
[25] N’Doye I., Darouach M., Voos H. and Zasadzinski M. (2013). Design of unknown input fractional-order observers for fractional-order systems, International Journal of Applied Mathematics and Computer Science 23(3): 491–500, DOI: 10.2478/amcs-2013-0037.
[26] Oldham, K.B. and Spanier, J. (1974). The Fractional Calculus, Academic Press, New York, NY.
[27] Ostalczyk, P. (2008). Epitome of the Fractional Calculus: Theory and Its Applications in Automatics, Technical University of Łódź Press, Łódź, (in Polish).
[28] Podlubny, I. (1999). Fractional Differential Equations, Academic Press, New York, NY.
[29] Van Dooren, P. (1979). The computation of Kronecker’s canonical form of a singular pencil, Linear Algebra and Its Applications 27: 103–140.
[30] Vinagre, B.M., Monje, C.A. and Calderon, A.J. (2002). Fractional order systems and fractional order control actions, Lecture 3, IEEE CDC’02, Las Vegas, NV, USA.
[31] Virnik, E. (2008). Stability analysis of positive descriptor systems, Linear Algebra and Its Applications 429: 2640–2659.