Reduced-order fractional descriptor observers for a class of fractional descriptor continuous-time nonlinear systems
International Journal of Applied Mathematics and Computer Science, Tome 26 (2016) no. 2, pp. 277-283.

Voir la notice de l'article provenant de la source Library of Science

Fractional descriptor reduced-order nonlinear observers for a class of fractional descriptor continuous-time nonlinear systems are proposed. Sufficient conditions for the existence of the observers are established. The design procedure for the observers is given and demonstrated on a numerical example.
Keywords: fractional system, descriptor system, nonlinear system, reduced order observer
Mots-clés : układ ułamkowy, układ deskryptorowy, układ nieliniowy
@article{IJAMCS_2016_26_2_a1,
     author = {Kaczorek, T.},
     title = {Reduced-order fractional descriptor observers for a class of fractional descriptor continuous-time nonlinear systems},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {277--283},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_2_a1/}
}
TY  - JOUR
AU  - Kaczorek, T.
TI  - Reduced-order fractional descriptor observers for a class of fractional descriptor continuous-time nonlinear systems
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2016
SP  - 277
EP  - 283
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_2_a1/
LA  - en
ID  - IJAMCS_2016_26_2_a1
ER  - 
%0 Journal Article
%A Kaczorek, T.
%T Reduced-order fractional descriptor observers for a class of fractional descriptor continuous-time nonlinear systems
%J International Journal of Applied Mathematics and Computer Science
%D 2016
%P 277-283
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_2_a1/
%G en
%F IJAMCS_2016_26_2_a1
Kaczorek, T. Reduced-order fractional descriptor observers for a class of fractional descriptor continuous-time nonlinear systems. International Journal of Applied Mathematics and Computer Science, Tome 26 (2016) no. 2, pp. 277-283. http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_2_a1/

[1] Cuihong, W. (2012). New delay-dependent stability criteria for descriptor systems with interval time delay, Asian Journal of Control 14(1): 197–206.

[2] Dodig, M. and Stosic, M. (2009). Singular systems state feedbacks problems, Linear Algebra and Its Applications 431(8): 1267–1292.

[3] Dai, L. (1989). Singular Control Systems, Lecture Notes in Control and Information Sciences, Vol. 118, Springer-Verlag, Berlin.

[4] Fahmy, M.M. and O’Reill, J. (1989). Matrix pencil of closed-loop descriptor systems: Infinite-eigenvalue assignment, International Journal of Control 49(4): 1421–1431.

[5] Gantmacher, F.R. (1960). The Theory of Matrices, Chelsea Publishing Co., New York, NY.

[6] Guang-ren, D. (2010). Analysis and Design of Descriptor Linear Systems, Springer, New York, NY.

[7] Kaczorek, T. (1992). Linear Control Systems, Vol. 1, Research Studies Press, J. Wiley, New York, NY.

[8] Kaczorek, T. (2001). Full-order perfect observers for continuous-time linear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 49(4).

[9] Kaczorek, T. (2004). Infinite eigenvalue assignment by an output feedback for singular systems, International Journal of Applied Mathematics and Computer Science 14(1): 19–23.

[10] Kaczorek, T. (2008). Fractional positive continuous-time linear systems and their reachability, International Journal of Applied Mathematics and Computer Science 18(2): 223–228, DOI: 10.2478/v10006-008-0020-0.

[11] Kaczorek, T. (2011a). Positive linear systems consisting of n subsystems with different fractional orders, IEEE Transactions on Circuits and Systems 58(7): 1203–1210.

[12] Kaczorek, T. (2011b). Selected Problems of Fractional Systems Theory, Springer-Verlag, Berlin.

[13] Kaczorek, T. (2012a). Checking of the positivity of descriptor linear systems with singular pencils, Archive of Control Sciences 22(1): 77–86.

[14] Kaczorek, T. (2012b). Positive fractional continuous-time linear systems with singular pencils, Bulletin of the Polish Academy of Sciences: Technical Sciences 60(1): 9–12.

[15] Kaczorek, T. (2013). Descriptor fractional linear systems with regular pencils, Asian Journal of Control 15(4): 1051–1064.

[16] Kaczorek, T. (2014a). Fractional descriptor observers for fractional descriptor continuous-time linear system, Archives of Control Sciences 24(1): 5–15.

[17] Kaczorek, T. (2014b). Reduced-order fractional descriptor observers for fractional descriptor continuous-time linear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 62(4): 889–895.

[18] Kaczorek, T. (2015). Prefect observers of fractional descriptor continuous-time linear systems, in K.J. Latawiec et al. (Eds.), Advances in Modeling and Control of Non-integer orders Systems, Lecture Notes in Electrical Engineering, Vol. 320, Springer, Berlin/Heidelberg, pp. 5–12.

[19] Kociszewski, R. (2013). Observer synthesis for linear discrete-time systems with different fractional orders, Pomiary Automatyka Robotyka (2): 376–381, (on CD-ROM).

[20] Kucera, V. and Zagalak, P. (1988). Fundamental theorem of state feedback for singular systems, Automatica 24(5): 653–658.

[21] Lewis, F.L. (1983). Descriptor systems, expanded descriptor equation and Markov parameters, IEEE Transactions on Automatic Control AC-28(5): 623–627.

[22] Luenberger, D.G. (1977). Dynamical equations in descriptor form, IEEE Transactions on Automatic Control AC-22(3): 312–321.

[23] Luenberger, D.G. (1978). Time-invariant descriptor systems, Automatica 14(5): 473–480.

[24] Matignon, D. (1996). Stability result on fractional differential equations with applications to control processing, IMACSSMC Proceedings, Lille, France, pp. 963–968.

[25] N’Doye I., Darouach M., Voos H. and Zasadzinski M. (2013). Design of unknown input fractional-order observers for fractional-order systems, International Journal of Applied Mathematics and Computer Science 23(3): 491–500, DOI: 10.2478/amcs-2013-0037.

[26] Oldham, K.B. and Spanier, J. (1974). The Fractional Calculus, Academic Press, New York, NY.

[27] Ostalczyk, P. (2008). Epitome of the Fractional Calculus: Theory and Its Applications in Automatics, Technical University of Łódź Press, Łódź, (in Polish).

[28] Podlubny, I. (1999). Fractional Differential Equations, Academic Press, New York, NY.

[29] Van Dooren, P. (1979). The computation of Kronecker’s canonical form of a singular pencil, Linear Algebra and Its Applications 27: 103–140.

[30] Vinagre, B.M., Monje, C.A. and Calderon, A.J. (2002). Fractional order systems and fractional order control actions, Lecture 3, IEEE CDC’02, Las Vegas, NV, USA.

[31] Virnik, E. (2008). Stability analysis of positive descriptor systems, Linear Algebra and Its Applications 429: 2640–2659.