Positivity and stability of fractional descriptor time-varying discrete-time linear systems
International Journal of Applied Mathematics and Computer Science, Tome 26 (2016) no. 1, pp. 5-13.

Voir la notice de l'article provenant de la source Library of Science

The Weierstrass–Kronecker theorem on the decomposition of the regular pencil is extended to fractional descriptor time-varying discrete-time linear systems. A method for computing solutions of fractional systems is proposed. Necessary and sufficient conditions for the positivity of these systems are established.
Keywords: fractional system, descriptor system, time varying system, positive system, discrete-time system
Mots-clés : układ ułamkowy, układ deskrypcyjny, układ dodatni, układ dyskretno-czasowy
@article{IJAMCS_2016_26_1_a0,
     author = {Kaczorek, T.},
     title = {Positivity and stability of fractional descriptor time-varying discrete-time linear systems},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {5--13},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_1_a0/}
}
TY  - JOUR
AU  - Kaczorek, T.
TI  - Positivity and stability of fractional descriptor time-varying discrete-time linear systems
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2016
SP  - 5
EP  - 13
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_1_a0/
LA  - en
ID  - IJAMCS_2016_26_1_a0
ER  - 
%0 Journal Article
%A Kaczorek, T.
%T Positivity and stability of fractional descriptor time-varying discrete-time linear systems
%J International Journal of Applied Mathematics and Computer Science
%D 2016
%P 5-13
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_1_a0/
%G en
%F IJAMCS_2016_26_1_a0
Kaczorek, T. Positivity and stability of fractional descriptor time-varying discrete-time linear systems. International Journal of Applied Mathematics and Computer Science, Tome 26 (2016) no. 1, pp. 5-13. http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_1_a0/

[1] Czornik, A. (2014). The relations between the senior upper general exponent and the upper Bohl exponents, 19th International Conference on Methods and Models in Automation and Robotics, Międzyzdroje, Poland, pp. 897–902.

[2] Czornik, A., Newrat, A., Niezabitowski, M., Szyda, A. (2012). On the Lyapunov and Bohl exponent of time-varying discrete linear systems, 20th Mediterranean Conference on Control and Automation (MED), Barcelona, Spain, pp. 194–197.

[3] Czornik, A., Newrat, A. and Niezabitowski, M. (2013). On the Lyapunov exponents of a class of the second order discrete time linear systems with bounded perturbations, Dynamical Systems: An International Journal 28(4): 473–483.

[4] Czornik, A. and Niezabitowski, M. (2013a). Lyapunov exponents for systems with unbounded coefficients, Dynamical Systems: An International Journal 28(2): 140–153.

[5] Czornik, A. and Niezabitowski, M. (2013b). On the stability of discrete time-varying linear systems, Nonlinear Analysis: Hybrid Systems 9: 27–41.

[6] Czornik, A. and Niezabitowski, M. (2013c). On the stability of Lyapunov exponents of discrete linear system, European Control Conference, Zurich, Switzerland, pp. 2210–2213.

[7] Czornik, A., Klamka, J. and Niezabitowski, M. (2014a). About the number of the lower Bohl exponents of diagonal discrete linear time-varying systems, 11th IEEE International Conference on Control Automation, Taichung, Taiwan, pp. 461–466.

[8] Czornik, A., Klamka, J. and Niezabitowski, M. (2014b). On the set of Perron exponents of discrete linear systems, World Congress of the 19th International Federation of Automatic Control, Kapsztad, South Africa, pp. 11740–11742.

[9] Farina, L. and Rinaldi, S. (2000). Positive Linear Systems: Theory and Applications, J. Wiley, New York, NY.

[10] Kaczorek, T. (1997). Positive singular discrete time linear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 45(4): 619–631.

[11] Kaczorek, T. (1998a). Positive descriptor discrete-time linear systems, Problems of Nonlinear Analysis in Engineering Systems 1(7): 38–54.

[12] Kaczorek, T. (1998b). Vectors and Matrices in Automation and Electrotechnics, WNT, Warsaw, (in Polish).

[13] Kaczorek, T. (2001). Positive 1D and 2D Systems, Springer Verlag, London.

[14] Kaczorek, T. (2011). Positive linear systems consisting of n subsystems with different fractional orders, IEEE Transactions on Circuits and Systems 58(6): 1203–1210.

[15] Kaczorek, T. (2012). Selected Problems of Fractional Systems Theory, Springer-Verlag, Berlin.

[16] Kaczorek, T. (2015a). Fractional descriptor standard and positive discrete-time nonlinear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 63(3): 651–655.

[17] Kaczorek, T. (2015b). Positive descriptor time-varying discrete-time linear systems and their asymptotic stability, TransNav 9(1): 83–89.

[18] Kaczorek, T. (2015c). Positivity and stability of time-varying discrete-time linear systems, in N.T. Nguyen et al. (Eds.), Intelligent Information and Database Systems, Lecture Notes in Computer Science, Vol. 9011, Springer, Berlin/Heidelberg, pp. 295–303.

[19] Niezabitowski, M. (2014). About the properties of the upper Bohl exponents of diagonal discrete linear time-varying systems, 19th International Conference on Methods and Models in Automation and Robotics, Mi˛edzyzdroje, Poland, pp. 880–884.

[20] Rami, M.A., Bokharaie, V.S., Mason, O. and Wirth, F.R. (2012). Extremal norms for positive linear inclusions, 20th International Symposium on Mathematical Theory of Networks and Systems, Melbourne, Australia, pp. 1–8.

[21] Zhang, H., Xie, D., Zhang, H. and Wang, G. (2014a). Stability analysis for discrete-time switched systems with unstable subsystems by a mode-dependent average dwell time approach, ISA Transactions 53(4): 1081–1086.

[22] Zhang, J., Han, Z., Wu, H. and Hung, J. (2014b). Robust stabilization of discrete-time positive switched systems with uncertainties and average dwell time switching, Circuits Systems and Signal Processing 33(1): 71–95.

[23] Zhong, Q., Cheng, J. and Zhong, S. (2013). Finite-time H∞ control of a switched discrete-time system with average dwell time, Advances in Difference Equations 2013, Article ID: 191.