Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2015_25_4_a8, author = {Kaczorek, T.}, title = {Positivity and linearization of a class of nonlinear continuous-time systems by state feedbacks}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {827--831}, publisher = {mathdoc}, volume = {25}, number = {4}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_4_a8/} }
TY - JOUR AU - Kaczorek, T. TI - Positivity and linearization of a class of nonlinear continuous-time systems by state feedbacks JO - International Journal of Applied Mathematics and Computer Science PY - 2015 SP - 827 EP - 831 VL - 25 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_4_a8/ LA - en ID - IJAMCS_2015_25_4_a8 ER -
%0 Journal Article %A Kaczorek, T. %T Positivity and linearization of a class of nonlinear continuous-time systems by state feedbacks %J International Journal of Applied Mathematics and Computer Science %D 2015 %P 827-831 %V 25 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_4_a8/ %G en %F IJAMCS_2015_25_4_a8
Kaczorek, T. Positivity and linearization of a class of nonlinear continuous-time systems by state feedbacks. International Journal of Applied Mathematics and Computer Science, Tome 25 (2015) no. 4, pp. 827-831. http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_4_a8/
[1] Aguilar, J.L.M., Garcia, R.A. and D’Attellis, C.E. (1995). Exact linearization of nonlinear systems: Trajectory tracking with bounded control and state constrains, 38th Midwest Symposium on Circuits and Systems, Rio de Janeiro, Brazil, pp. 620–622.
[2] Brockett, R.W. (1976). Nonlinear systems and differential geometry, Proceedings of the IEEE 64(1): 61–71.
[3] Charlet, B., Levine, J. and Marino, R. (1991). Sufficient conditions for dynamic state feedback linearization, SIAM Journal on Control and Optimization 29(1): 38–57.
[4] Daizhan, C., Tzyh-Jong, T. and Isidori, A. (1985). Global external linearization of nonlinear systems via feedback, IEEE Transactions on Automatic Control 30(8): 808–811.
[5] Fang, B. and Kelkar, A.G. (2003). Exact linearization of nonlinear systems by time scale transformation, IEEE American Control Conference, Denver, CO, USA, pp. 3555–3560.
[6] Farina, L. and Rinaldi, S. (2000). Positive Linear Systems: Theory and Applications, J. Wiley, NewYork, NY.
[7] Isidori, A. (1989). Nonlinear Control Systems, Springer-Verlag, Berlin.
[8] Jakubczyk, B. (2001). Introduction to geometric nonlinear control: Controllability and Lie bracket, Summer School on Mathematical Control Theory, Triest, Italy.
[9] Jakubczyk, B. and Respondek, W. (1980). On linearization of control systems, Bulletin of the Polish Academy Sciences: Technical Sciences 28: 517–521.
[10] Kaczorek, T. (2002). Positive 1D and 2D Systems, Springer Verlag, London.
[11] Kaczorek, T. (2011). Positive linear systems consisting of n subsystems with different fractional orders, IEEE Transactions on Circuit and Systems 58(6): 1203–1210.
[12] Kaczorek, T. (2012). Selected Problems of Fractional System Theory, Springer Verlag, Berlin.
[13] Kaczorek, T. (2013). Minimum energy control of fractional positive discrete-time linear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 61(4): 803–807.
[14] Kaczorek, T. (2014a). Minimum energy control of descriptor positive discrete-time systems, COMPEL 33(3): 1–14.
[15] Kaczorek, T. (2014b). Necessary and sufficient conditions for minimum energy control of positive discrete-time linear systems with bounded inputs, Bulletin of the Polish Academy of Sciences: Technical Sciences 62(1): 85–89.
[16] Kaczorek, T. (2014c). Minimum energy control of fractional positive continuous-time linear systems with bounded inputs, International Journal of Applied Mathematics and Computer Science 24(2): 335–340, DOI: 10.2478/amcs-2014-0025.
[17] Malesza, W. (2008). Geometry and Equivalence of Linear and Nonlinear Control Systems Invariant on Corner Regions, Ph.D. thesis, Warsaw University of Technology, Warsaw.
[18] Malesza, W. and Respondek, W. (2007). State-linearization of positive nonlinear systems: Applications to Lotka–Volterra controlled dynamics, in F. Lamnabhi-Lagarrigu et al. (Eds.), Taming Heterogeneity and Complexity of Embedded Control, John Wiley, Hoboken, NJ, pp. 451–473.
[19] Marino, R. and Tomei, P. (1995). Nonlinear Control Design—Geometric, Adaptive, Robust, Prentice Hall, London.
[20] Melhem, K., Saad, M. and Abou, S.C. (2006). Linearization by redundancy and stabilization of nonlinear dynamical systems: A state transformation approach, IEEE International Symposium on Industrial Electronics, Montreal, Canada, pp. 61–68.
[21] Taylor, J.H. and Antoniotti, A.J. (1993). Linearization algorithms for computer-aided control engineering, Control Systems Magazine 13(2): 58–64.
[22] Wei-Bing, G. and Dang-Nan, W. (1992). On the method of global linearization and motion control of nonlinear mechanical systems, International Conference on Industrial Electronics, Control, Instrumentation and Automation, San Diego, CA, USA, pp. 1476–1481.