Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2015_25_4_a6, author = {Luo, N. and Tan, Y. and Dong, R.}, title = {Observability and controllability analysis for sandwich systems with backlash}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {803--814}, publisher = {mathdoc}, volume = {25}, number = {4}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_4_a6/} }
TY - JOUR AU - Luo, N. AU - Tan, Y. AU - Dong, R. TI - Observability and controllability analysis for sandwich systems with backlash JO - International Journal of Applied Mathematics and Computer Science PY - 2015 SP - 803 EP - 814 VL - 25 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_4_a6/ LA - en ID - IJAMCS_2015_25_4_a6 ER -
%0 Journal Article %A Luo, N. %A Tan, Y. %A Dong, R. %T Observability and controllability analysis for sandwich systems with backlash %J International Journal of Applied Mathematics and Computer Science %D 2015 %P 803-814 %V 25 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_4_a6/ %G en %F IJAMCS_2015_25_4_a6
Luo, N.; Tan, Y.; Dong, R. Observability and controllability analysis for sandwich systems with backlash. International Journal of Applied Mathematics and Computer Science, Tome 25 (2015) no. 4, pp. 803-814. http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_4_a6/
[1] Balachandran, K. and Shanmugam, D. (2014). Controllability of nonlinear implicit fractional integrodifferential systems, International Journal of Applied Mathematics and Computer Science 24(4): 713–722, DOI: 10.2478/amcs-2014-0052.
[2] Clarke, F.H. (1983). Optimization and Nonsmooth Analysis, John Wiley, New York, NY.
[3] Dong, R., Tan, Y., Chen, H. and Xie, Y. (2012). Nonsmooth recursive identification of sandwich systems with backlash-like hysteresis, Journal of Applied Mathematics 2012: 1–16, ID 457601.
[4] Herman, R. and Krener, A. (1977). Nonlinear controllability and observability, IEEE Transactions on Automatic Control 22(5): 728–740.
[5] Isidori, A. (1989). Nonlinear Control Systems, Springer, London.
[6] Jank, G. (2002). Controllability, observability and optimal control of continuous-time 2-D systems, International Journal of Applied Mathematics and Computer Science 12(2): 181–195.
[7] Kalman, R., Falb, P. and Arbib, M. (1969). Topics in Mathematical System Theory, Mc Graw-Hill Company, New York, NY.
[8] Karthikeyan, S., Balachandran, K. and Murugesan, S. (2015). Controllability of nonlinear stochastic systems with multiple time-varying delays in control, International Journal of Applied Mathematics and Computer Science 25(2): 207–215, DOI: 10.1515/amcs-2015-0015.
[9] Klamka, J. (1975). On the global controllability of perturbed nonlinear systems, IEEE Transactions on Automatic Control 20(1): 170–172.
[10] Klamka, J. (1991). Controllability of Dynamical Systems, Kluwer Academic Publishers, Dordrecht.
[11] Klamka, J. (2002). Controllability of nonlinear discrete systems, American Control Conference, Anchorage, AK, USA, pp. 4670–4671.
[12] Klamka, J. (2013a). Constrained controllability of second order dynamical systems with delay, Control and Cybernetics 42(1): 111–121.
[13] Klamka, J. (2013b). Controllability of dynamical systems: A survey, Bulletin of the Polish Academy of Sciences: Technical Sciences 61(2): 221–229.
[14] Klamka, J., Czornik, A. and Niezabitowski, M. (2013). Stability and controllability of switched systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 61(3): 547–554.
[15] Koplon, R. and Sontag, E. (1993). Linear systems with sign observations, SIAM Journal Control and Optimization 31(12): 1245–1266.
[16] Mincheko, L. and Sirotko, S. (2002). Controllability of non-smooth discrete systems with delay, Optimization 51(1): 161–174.
[17] Murphey, T. and Burdick, J. (2002). Nonsmooth controllability theory and an example, 41st IEEE Conference on Decision and Control, Las Vegas, NV, USA, pp. 370–376.
[18] Nordin, M. and Gutman, P.O. (2002). Controlling mechanical systems with backlash—a survey, Automatica 38(4): 1633–1649.
[19] Qi, L. and Sun, J. (1993). A nonsmooth version of Newton’s method, Mathematical Programming 58(3): 353–367.
[20] Rockafellar, R.T. and Wets, R. J.B. (1998). Variational Analysis, Springer, Berlin.
[21] Sontag, E. (1979). On the observability of polynomial systems, I: Finite-time problems, SIAM Journal of Control and Optimization 17(1): 139–151.
[22] Sussmann, H. (1979). Single-input observability of continuous-time systems, Mathematical Systems Theory 12(3): 371–393.
[23] van der Schaft, A.J. (1982). Observability and controllability for smooth nonlinear systems, SIAM Journal of Control and Optimization 20(3): 338–354.
[24] Zhirabok, A. and Shumsky, A. (2012). An approach to the analysis of observability and controllability in nonlinear systems via linear methods, International Journal of Applied Mathematics and Computer Science 22(3): 507–522, DOI: 10.2478/v10006-012-0038-1.