Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2015_25_4_a5, author = {Zeifman, A. and Korotysheva, A. and Satin, Y. and Korolev, V. and Shorgin, S. and Razumchik, R.}, title = {Ergodicity and perturbation bounds for inhomogeneous birth and death processes with additional transitions from and to the origin}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {787--802}, publisher = {mathdoc}, volume = {25}, number = {4}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_4_a5/} }
TY - JOUR AU - Zeifman, A. AU - Korotysheva, A. AU - Satin, Y. AU - Korolev, V. AU - Shorgin, S. AU - Razumchik, R. TI - Ergodicity and perturbation bounds for inhomogeneous birth and death processes with additional transitions from and to the origin JO - International Journal of Applied Mathematics and Computer Science PY - 2015 SP - 787 EP - 802 VL - 25 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_4_a5/ LA - en ID - IJAMCS_2015_25_4_a5 ER -
%0 Journal Article %A Zeifman, A. %A Korotysheva, A. %A Satin, Y. %A Korolev, V. %A Shorgin, S. %A Razumchik, R. %T Ergodicity and perturbation bounds for inhomogeneous birth and death processes with additional transitions from and to the origin %J International Journal of Applied Mathematics and Computer Science %D 2015 %P 787-802 %V 25 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_4_a5/ %G en %F IJAMCS_2015_25_4_a5
Zeifman, A.; Korotysheva, A.; Satin, Y.; Korolev, V.; Shorgin, S.; Razumchik, R. Ergodicity and perturbation bounds for inhomogeneous birth and death processes with additional transitions from and to the origin. International Journal of Applied Mathematics and Computer Science, Tome 25 (2015) no. 4, pp. 787-802. http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_4_a5/
[1] Chen, A., Pollett, P., Li, J. and Zhang, H. (2010). Markovian bulk-arrival and bulk-service queues with state-dependent control, Queueing Systems 64(3): 267–304.
[2] Chen, A. and Renshaw, E. (1997). The m|m|1 queue with mass exodus and mass arrives when empty, Journal of Applied Probability 34(1): 192–207.
[3] Chen, A. and Renshaw, E. (2004). Markov bulk-arriving queues with state-dependent control at idle time, Advances in Applied Probability 36(2): 499–524.
[4] Daleckij, J. and Krein, M. (1975). Stability of solutions of differential equations in Banach space, Bulletin of the American Mathematical Society 81(6): 1024–102.
[5] Gaidamaka, Y., Pechinkin, A., Razumchik, R., Samouylov, K. and Sopin, E. (2014). Analysis of an M/G/1/R queue with batch arrivals and two hysteretic overload control policies, International Journal of Applied Mathematics and Computer Science 24(3): 519–534, DOI: 10.2478/amcs-2014-0038.
[6] Granovsky, B. and Zeifman, A. (2004). Nonstationary queues: Estimation of the rate of convergence, Queueing Systems 46(3–4): 363–388.
[7] Li, J. and Chen, A. (2013). The decay parameter and invariant measures for Markovian bulk-arrival queues with control at idle time, Methodology and Computing in Applied Probability 15(2): 467–484.
[8] Parthasarathy, P. and Kumar, B.K. (1991). Density-dependent birth and death processes with state-dependent immigration, Mathematical and Computer Modelling 15(1): 11–16.
[9] Van Doorn, E., Zeifman, A. and Panfilova, T. (2010). Bounds and asymptotics for the rate of convergence of birth-death processes, Theory of Probability and Its Applications 54(1): 97–113.
[10] Zeifman, A. (1995). Upper and lower bounds on the rate of convergence for nonhomogeneous birth and death processes, Stochastic Processes and Their Applications 59(1): 157–173.
[11] Zeifman, A., Bening, V. and Sokolov, I. (2008). Continuous-Time Markov Chains and Models, Elex-KM, Moscow.
[12] Zeifman, A. and Korolev, V. (2014). On perturbation bounds for continuous-time Markov chains, Statistics Probability Letters 88(1): 66–72.
[13] Zeifman, A. and Korotysheva, A. (2012). Perturbation bounds for Mt/Mt/N queue with catastrophes, Stochastic Models 28(1): 49–62.
[14] Zeifman, A., Korotysheva, A., Satin, Y. and Shorgin, S. (2010). On stability for nonstationary queueing systems with catastrophes, Informatics and Its Applications 4(3): 9–15.
[15] Zeifman, A., Leorato, S., Orsingher, E., Satin, Y. and Shilova, G. (2006). Some universal limits for nonhomogeneous birth and death processes, Queueing Systems 52(2): 139–151.
[16] Zeifman, A., Satin, Y., Korolev, V. and Shorgin, S. (2014). On truncations for weakly ergodic inhomogeneous birth and death processes, International Journal of Applied Mathematics and Computer Science 24(3): 503–518, DOI: 10.2478/amcs-2014-0037.