Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2015_25_2_a12, author = {Zhai, G.}, title = {A generalization of the graph {Laplacian} with application to a distributed consensus algorithm}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {353--360}, publisher = {mathdoc}, volume = {25}, number = {2}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_2_a12/} }
TY - JOUR AU - Zhai, G. TI - A generalization of the graph Laplacian with application to a distributed consensus algorithm JO - International Journal of Applied Mathematics and Computer Science PY - 2015 SP - 353 EP - 360 VL - 25 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_2_a12/ LA - en ID - IJAMCS_2015_25_2_a12 ER -
%0 Journal Article %A Zhai, G. %T A generalization of the graph Laplacian with application to a distributed consensus algorithm %J International Journal of Applied Mathematics and Computer Science %D 2015 %P 353-360 %V 25 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_2_a12/ %G en %F IJAMCS_2015_25_2_a12
Zhai, G. A generalization of the graph Laplacian with application to a distributed consensus algorithm. International Journal of Applied Mathematics and Computer Science, Tome 25 (2015) no. 2, pp. 353-360. http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_2_a12/
[1] Bauer, P.H. (2008). New challenges in dynamical systems: The networked case, International Journal of Applied Mathematics and Computer Science 18(3): 271–277, DOI: 10.2478/v10006-008-0025-8.
[2] Cai, K. and Ishii, H. (2012). Average consensus on general strongly connected digraphs, Automatica 48(11): 2750–2761.
[3] Fax, J.A. and Murray, R.M. (2004). Information flow and cooperative control of vehicle formations, IEEE Transactions on Automatic Control 49(9): 1465–1476.
[4] Gantmacher, F.R. (1959). The Theory of Matrices, Chelsea, New York, NY.
[5] Jadbabaie, A., Lin, J. and Morse, A.S. (2003). Coordination of groups of mobile autonomous agents using nearest neighbor rules, IEEE Transactions on Automatic Control 48(6): 988–1001.
[6] Khalil, H.K. (2002). Nonlinear Systems, Second Edition, Prentice Hall, Englewood Cliffs, NJ.
[7] Mohar, B. (1991). The Laplacian spectrum of graphs, in Y. Alavi, G. Chartrand, O. Ollermann and A. Schwenk (Eds.), Graph Theory, Combinatorics, and Applications, Wiley, New York, NY.
[8] Moreau, L. (2005). Stability of multi-agent systems with time-dependent communication links, IEEE Transactions on Automatic Control 50(2): 169–182.
[9] Olfati-Saber, R., Fax, J.A. and Murray, R.M. (2007). Consensus and cooperation in networked multi-agent systems, Proceedings of the IEEE 95(1): 215–233.
[10] Priolo, A., Gasparri, A., Montijano, E. and Sagues, C. (2014). A distributed algorithm for average consensus on strongly connected weighted digraphs, Automatica 50(3): 946–951.
[11] Ren, W. and Beard, R.W. (2005). Consensus seeking in multi-agent systems under dynamically changing interaction topologies, IEEE Transactions on Automatic Control 50(5): 655–661.
[12] Shamma, J. (2008). Cooperative Control of Distributed Multi-Agent Systems, Wiley, New York, NY.
[13] Vicsek, T., Czirok, A., Ben-Jacob, E., Cohen, I. and Shochet, O. (1995). Novel type of phase transition in a system of self-driven particles, Physical Review Letters 75(6): 1226–1229.
[14] Zhai, G., Okuno, S., Imae, J. and Kobayashi, T. (2009). A matrix inequality based design method for consensus problems in multi-agent systems, International Journal of Applied Mathematics and Computer Science 19(4): 639–646, DOI: 10.2478/v10006-009-0051-1.
[15] Zhai, G., Takeda, J., Imae, J. and Kobayashi, T. (2010). Towards consensus in networked nonholonomic systems, IET Control Theory Applications 4(10): 2212–2218.