Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2015_25_2_a0, author = {Karthikeyan, S. and Balachandran, K. and Sathya, M.}, title = {Controllability of nonlinear stochastic systems with multiple time-varying delays in control}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {207--215}, publisher = {mathdoc}, volume = {25}, number = {2}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_2_a0/} }
TY - JOUR AU - Karthikeyan, S. AU - Balachandran, K. AU - Sathya, M. TI - Controllability of nonlinear stochastic systems with multiple time-varying delays in control JO - International Journal of Applied Mathematics and Computer Science PY - 2015 SP - 207 EP - 215 VL - 25 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_2_a0/ LA - en ID - IJAMCS_2015_25_2_a0 ER -
%0 Journal Article %A Karthikeyan, S. %A Balachandran, K. %A Sathya, M. %T Controllability of nonlinear stochastic systems with multiple time-varying delays in control %J International Journal of Applied Mathematics and Computer Science %D 2015 %P 207-215 %V 25 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_2_a0/ %G en %F IJAMCS_2015_25_2_a0
Karthikeyan, S.; Balachandran, K.; Sathya, M. Controllability of nonlinear stochastic systems with multiple time-varying delays in control. International Journal of Applied Mathematics and Computer Science, Tome 25 (2015) no. 2, pp. 207-215. http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_2_a0/
[1] Balachandran, K. (1987). Global relative controllability of nonlinear systems with time-varying multiple delays in control, International Journal of Control 46(1): 193–200.
[2] Balachandran, K. and Dauer, J.P. (1996). Null controllability of nonlinear infinite delay systems with time varying multiple delays in control, Applied Mathematics Letters 9(3): 115–121.
[3] Balachandran, K., and Karthikeyan, S. (2009). Controllability of stochastic systems with distributed delays in control, International Journal of Control 82(7): 1288–1296.
[4] Balachandran, K., Kokila, J. and Trujillo, J.J. (2012). Relative controllability of fractional dynamical systems with multiple delays in control, Computers Mathematics with Applications 64(10): 3037–3045.
[5] Basin, M., Rodriguez-Gonzaleza, J. and Martinez-Zunigab, M. (2004). Optimal control for linear systems with time delay in control input, Journal of the Franklin Institute 341(1): 267–278.
[6] Dauer, J.P., Balachandran, K. and Anthoni, S.M. (1998). Null controllability of nonlinear infinite neutral systems with delays in control, Computers Mathematics with Applications 36(1): 39–50.
[7] Enrhardt, M. and W. Kliemann, W. (1982). Controllability of stochastic linear systems, Systems and Control Letters 2(3): 145–153.
[8] Gu, K. and Niculescu, S.I. (2003). Survey on recent results in the stability and control of time-delay systems, ASME Transactions: Journal of Dynamic Systems, Measurement, and Control 125(2): 158–165.
[9] Guendouzi, T. and Hamada, I. (2013). Relative controllability of fractional stochastic dynamical systems with multiple delays in control, Malaya Journal of Matematik 1(1): 86–97.
[10] Guendouzi, T. and Hamada, I. (2014). Global relative controllability of fractional stochastic dynamical systems with distributed delays in control, Sociedade Paranaense de Matematica Boletin 32(2): 55–71.
[11] Karthikeyan, S. and Balachandran, K. (2013). On controllability for a class of stochastic impulsive systems with delays in control, International Journal of Systems Science 44(1): 67–76.
[12] Klamka, J. (1976). Controllability of linear systems with time-variable delays in control, International Journal of Control 24(2): 869–878.
[13] Klamka, J. (1978). Relative controllability of nonlinear systems with distributed delays in control, International Journal of Control 28(2): 307–312.
[14] Klamka, J. (1980). Controllability of nonlinear systems with distributed delay in control, International Journal of Control 31(1): 811–819.
[15] Klamka, J. (1991). Controllability of Dynamical Systems, Kluwer Academic Publishers, Dordrecht.
[16] Klamka, J. (2000). Schauder’s fixed point theorem in nonlinear controllability problems, Control and Cybernetics 29(2): 153–165.
[17] Klamka, J. (2007a). Stochastic controllability of linear systems with delay in control, Bulletin of the Polish Academy of Sciences: Technical Sciences 55(1): 23–29.
[18] Klamka, J. (2007b). Stochastic controllability of linear systems with state delays, International Journal of Applied Mathematics and Computer Science 17(1): 5–13, DOI: 10.2478/v10006-007-0001-8.
[19] Klamka, J. (2008a). Stochastic controllability of systems with variable delay in control, Bulletin of the Polish Academy of Sciences: Technical Sciences 56(3): 279–284.
[20] Klamka, J. (2008b). Stochastic controllability and minimum energy control of systems with multiple delays in control, Applied Mathematics and Computation 206(2): 704–715.
[21] Klamka, J. (2009). Constrained controllability of semilinear systems with delays, Nonlinear Dynamics 56(4): 169–177.
[22] Klamka, J. (2013), Controllability of dynamical systems. A survey, Bulletin of the Polish Academy of Sciences: Technical Sciences 61(2): 335–342.
[23] Klein, E.J. and Ramirez, W.F. (2001). State controllability and optimal regulator control of time-delayed systems, International Journal of Control 74(3): 281–89.
[24] Li, W. (1970). Mathematical Models in the Biological Sciences, Master’s thesis, Brown University, Providence, RI.
[25] Mahmudov, N.I. (2001). Controllability of linear stochastic systems, IEEE Transactions on Automatic Control 46(1): 724–731.
[26] Mahmudov, N.I., and Denker, A. (2000). On controllability of linear stochastic systems, International Journal of Control 73(2): 144–151.
[27] Mahmudov, N.I., and Zorlu, S. (2003). Controllability of nonlinear stochastic systems, International Journal of Control 76(2): 95–104.
[28] Oksendal, B. (2003). Stochastic Differential Equations. An Introduction with Applications, Sixth Edition, Springer-Verlag, Berlin.
[29] Richard, J.P. (2003). Time-delay systems: An overview of some recent advances and open problems, Automatica 39(10): 1667–1694.
[30] Somasundaram, D. and Balachandran, K. (1984). Controllability of nonlinear systems consisting of a bilinear mode with distributed delays in control, IEEE Transactions on Automatic Control AC-29(2): 573–575.
[31] Shen, L., and Sun, J. (2012). Relative controllability of stochastic nonlinear systems with delay in control, Nonlinear Analysis: Real World Applications 13(1): 2880–2887.
[32] Sikora, B. and Klamka, J. (2012). On constrained stochastic controllability of dynamical systems with multiple delays in control, Bulletin of the Polish Academy of Sciences: Technical Sciences 60(2): 301–305.
[33] Zhang, R., Li, T., and Guo, L. (2013). H∞ control for flexible spacecraft with time-varying input delay, Mathematical Problems in Engineering 23: 1–6.