Nonlinear control for a diesel engine: A CLF-based approach
International Journal of Applied Mathematics and Computer Science, Tome 24 (2014) no. 4, pp. 821-835.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we propose a control Lyapunov function based on a nonlinear controller for a turbocharged diesel engine. A model-based approach is used which predicts the experimentally observed engine performance for a biodiesel. The basic idea is to develop an inverse optimal control and to employ a Lyapunov function in order to achieve good performances. The obtained controller gain guarantees the global convergence of the system and regulates the flows for the variable geometry turbocharger as well as exhaust gas recirculation systems in order to minimize the NOx emission and the smoke of a biodiesel engine. Simulation of the control performances based on professional software and experimental results show the effectiveness of this approach.
Keywords: turbocharged diesel engine, control Lyapunov function, nonlinear control design, stability analysis, diesel virtual test bench
Mots-clés : silnik wysokoprężny, turbodoładowanie, funkcja Lapunowa, sterowanie nieliniowe, analiza stabilności, stanowisko badawcze
@article{IJAMCS_2014_24_4_a9,
     author = {Kuzmych, O. and Aitouche, A. and El-Hajjaji, A. and Bosche, J.},
     title = {Nonlinear control for a diesel engine: {A} {CLF-based} approach},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {821--835},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_4_a9/}
}
TY  - JOUR
AU  - Kuzmych, O.
AU  - Aitouche, A.
AU  - El-Hajjaji, A.
AU  - Bosche, J.
TI  - Nonlinear control for a diesel engine: A CLF-based approach
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2014
SP  - 821
EP  - 835
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_4_a9/
LA  - en
ID  - IJAMCS_2014_24_4_a9
ER  - 
%0 Journal Article
%A Kuzmych, O.
%A Aitouche, A.
%A El-Hajjaji, A.
%A Bosche, J.
%T Nonlinear control for a diesel engine: A CLF-based approach
%J International Journal of Applied Mathematics and Computer Science
%D 2014
%P 821-835
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_4_a9/
%G en
%F IJAMCS_2014_24_4_a9
Kuzmych, O.; Aitouche, A.; El-Hajjaji, A.; Bosche, J. Nonlinear control for a diesel engine: A CLF-based approach. International Journal of Applied Mathematics and Computer Science, Tome 24 (2014) no. 4, pp. 821-835. http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_4_a9/

[1] Abidi, I., Bosche, J., Hajjaji, A.E. and Aguilera-Gonzales, A. (2013). Fuzzy robust tracking control with pole placement for a turbocharged diesel engine, Proceedings of the 21st Mediterranean Conference on Control and Automation (MED’13), Crete, Greece.

[2] Adi, G., Hall, C., Snyder, D., Bunce, M., Satkoski, C., Kumar, S., Garimella, P., Stanton, D. and Shaver, G. (2009). Soy-biodiesel impact on nox emissions and fuel economy for diffusion-dominated combustion in a turbo-diesel engine incorporating exhaust gas recirculation and common rail fuel injection, Energy Fuels 23(12): 5821–5829.

[3] Boulkroune, B., Djemili, I., Aitouche, A. and Cocquempot, V. (2013). Robust nonlinear observer design for actuator fault detection in diesel engines, International Journal of Applied Mathematics and Computer Science 23(3): 557–569, DOI: 10.2478/amcs-2013-0042.

[4] Cook, J., Sun, J., Buckland, J., Kolmanovsky, I.V., Peng, H. and Grizzle,W. (2006). Automotive powertrain control—a survey, Asian Journal of Control 8(3): 237–260.

[5] Delaleau, E., Louis, J.-P. and Ortega, R. (2001). Modeling and control of induction motors, International Journal of Applied Mathematics and Computer Science 11(1): 105–129.

[6] Djemili, I., Aitouche, A. and Cocquempot, V. (2012). Fault tolerant control of internal combustion engine subject to intake manifold leakage, Preprints of the 8th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes (SAFEPROCESS), Mexico City, Mexico.

[7] Isidori, A. (1989). Nonlinear Control Systems, 2nd Edn., Springer Verlag, Berlin.

[8] Jankovic, M., Jankovic, M. and Kolmanovsky, I. (1998). Robust nonlinear controller for turbocharged diesel engines, Proceedings of the American Control Conference, Philadelphia, PA, USA, pp. 1389–1395.

[9] Jankovic, M., Jankovic, M. and Kolmanovsky, I. (2000). Constructive Lyapunov control design for turbocharged diesel engines, IEEE Transactions on Control Systems Technology 8(2): 288–299.

[10] Kao, M. and Moskwa, J. (1995). Turbocharged diesel engine modeling for nonlinear engine control and state estimation, ASME Journal of Dynamic Systems, Measurement and Control 117(1): 20–30.

[11] Kuzmych, O., Aitouche, A., Bosche, J. and El-Hajjaji, A. (2012). Robust nonlinear observer with H∞ performance analysis of a turbocharged diesel engine, International Symposium on Security and Safety of Complex Systems, 2SCS12, Agadir, Morocco.

[12] Lansky, L. (2008). Diesel Engine Modelling and Control, Master’s thesis, Czech Technical University in Prague, Prague.

[13] Sepulchre, R., Jankovic, M. and Kokotovic, P. (1997). Constructive Nonlinear Control, Springer Verlag, Berlin.

[14] Simani, S. (2013). Residual generator fuzzy identification for automotive diesel engine fault diagnosis, International Journal of Applied Mathematics and Computer Science 23(2): 419–438, DOI: 10.2478/amcs-2013-0032.

[15] Stefanopoulou, A.G., Kolmonovsky, I. and Freudenberg, J.S. (2000). Control of variable geometry turbocharged diesel engines for reduced emissions, Transactions on Control System Technology 8(4): 733–745.

[16] Takagi, T. and Sugeno, M. (1985). Fuzzy identification of systems and its applications to modeling and control, IEEE Transactions on Systems, Man and Cybernetics 15(1): 116–132.

[17] Tanaka, K. and Wang, H.O. (2001). Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach, Wiley, New York, NY.

[18] Tomera, M. (2010). Nonlinear controller design of a ship autopilot, International Journal of Applied Mathematics and Computer Science 20(2): 271–280, 10.2478/v10006-010-0020-8.

[19] Upadhyay, D., Utkin, V. and Rizzoni, G. (2002). Multivariable control design for intake flow regulation of a diesel engine using sliding mode, 15th Triennial World Congress, Barcelona, Spain, Vol. 15, Part 1.

[20] Utkin, V. (1992). Sliding Modes in Control Optimization, Springer Verlag, Berlin/New York, NY.

[21] Wahlstrom, J. and Eriksson, L. (2011a). Modeling diesel engines with a variable-geometry turbocharger and exhaust gas recirculation by optimization of model parameters for capturing non-linear system dynamics, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 225(7): 959–986.

[22] Wahlstrom, J. and Eriksson, L. (2011b). Nonlinear EGR and VGT control with integral action for diesel engines, Oil and Gas Science and Technology 66(4): 573–586.

[23] Wahlstrom, J., Eriksson, L., Nielsen, L. and Pettersson, M. (2005). PID controllers and their tuning for EGR and VGT control in diesel engines, 16th IFAC World Congress, Prague, Czech Republic.

[24] Witkowska, A. and Śmierzchalski, R. (2012). Designing a ship course controller by applying the adaptive backstepping method, International Journal of Applied Mathematics and Computer Science 22(4): 985–997, DOI: 10.2478/v10006-012-0073-y.

[25] Yarza, A., Santibanez, V. and Moreno-Valenzuela, J. (2013). An adaptive output feedback motion tracking controller for robot manipulators: Uniform global asymptotic stability and experimentation, International Journal of Applied Mathematics and Computer Science 23(3): 599–611, DOI: 10.2478/amcs-2013-0045.

[26] Zemouche, Z., Boutayeb, M. and Bara, G. (2004). Observer design for nonlinear systems: An approach based on the differential mean value theorem, Proceedings of the 44th IEEE Conference on Decision and Control/European Control Conference, Seville, Spain, 2005.