Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2014_24_4_a4, author = {Korus, {\L}.}, title = {Efficiency analysis of control algorithms in spatially distributed systems with chaotic behavior}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {759--770}, publisher = {mathdoc}, volume = {24}, number = {4}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_4_a4/} }
TY - JOUR AU - Korus, Ł. TI - Efficiency analysis of control algorithms in spatially distributed systems with chaotic behavior JO - International Journal of Applied Mathematics and Computer Science PY - 2014 SP - 759 EP - 770 VL - 24 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_4_a4/ LA - en ID - IJAMCS_2014_24_4_a4 ER -
%0 Journal Article %A Korus, Ł. %T Efficiency analysis of control algorithms in spatially distributed systems with chaotic behavior %J International Journal of Applied Mathematics and Computer Science %D 2014 %P 759-770 %V 24 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_4_a4/ %G en %F IJAMCS_2014_24_4_a4
Korus, Ł. Efficiency analysis of control algorithms in spatially distributed systems with chaotic behavior. International Journal of Applied Mathematics and Computer Science, Tome 24 (2014) no. 4, pp. 759-770. http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_4_a4/
[1] Abarbanel, H. (1996). Analysis of Observed Chaotic Data, Springer-Verlag, New York, NY.
[2] Alsing, P.M., Gavrielides, A. and Kovanis, V. (1994). Using neural networks for controlling chaos, Physical Review E 49(2): 1225–1231.
[3] Andrievskii, B.R. and Fradkov, A.L. (2003). Control of chaos: Methods and applications, Automation and Remote Control 64(5): 673–713.
[4] Andrzejak, R.G., Lehnertz, K., Mormann, F., Rieke, C., David, P. and Elger, C.E. (2001). Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state, Physical Review E 64(1): 1–8.
[5] Argoul, F., Arneodo, A., Richetti, P. and Roux, J.C. (1987). From quasiperiodicity to chaos in the Belousov–Zhabotinskii reaction, I: Experiment, Journal of Chemical Physics 86(6): 3325–3339.
[6] Banerjee, S., Misra, A.P., Shukla, P.K. and Rondoni, L. (2010). Spatiotemporal chaos and the dynamics of coupled Langmuir and ion-acoustic waves in plasmas, Physical Review E 81(1): 1–10.
[7] Bashkirtseva, I. and Ryashko, L. (2013). Attainability analysis in the problem of stochastic equilibria synthesis for nonlinear discrete systems, International Journal of Applied Mathematics and Computer Science 23(1): 5–16, DOI: 10.2478/amcs-2013-0001.
[8] Boukabou, A. and Mansouri, N. (2005). Predictive control of higher dimensional chaos, Nonlinear Phenomena in Complex Systems 8(3): 258–265.
[9] Chen, G. and Dong, X. (1993). On feedback control of chaotic continuous-time systems, IEEE Transactions on Circuits and Systems 40(9): 591–601.
[10] Chen, Q., Teng, Z. and Hu, Z. (2013). Bifurcation and control for a discrete-time prey–predator model with Holling-IV functional response, International Journal of Applied Mathematics and Computer Science 23(2): 247–261, DOI: 10.2478/amcs-2013-0019.
[11] Chui, S.T. and Ma, K.B. (1982). Nature of some chaotic states for Duffing’s equation, Physical Review A 26(4): 2262–2265.
[12] Cordoba, A., Lemos, M.C. and Jimenez-Morales, F. (2006). Periodical forcing for the control of chaos in a chemical reaction, Journal of Chemical Physics 124(1): 1–6.
[13] Crutchfield, J.P. and Kaneko, K. (1987). Directions in Chaos: Phenomenology of Spatio-Temporal Chaos, World Scientific Publishing Co., Singapore.
[14] Dressler, U. and Nitsche, G. (1992). Controlling chaos using time delay coordinates, Physical Review Letters 68(1): 1–4.
[15] Gautama, T., Mandic, D.P. and Hulle, M.M.V. (2003). Indications of nonlinear structures in brain electrical activity, Physical Review E 67(1): 1–5.
[16] Govindan, R.B., Narayanan, K. and Gopinathan, M.S. (1998). On the evidence of deterministic chaos in ECG: Surrogate and predictability analysis, Chaos 8(2): 495–502.
[17] Gunaratne, G.H., Lisnay, P.S. and Vinson, M.J. (1989). Chaos beyond onset: A comparison of theory and experiment, Physical Review Letters 63(1): 1–4.
[18] Held, G.A., Jeffries, C. and Haller, E.E. (1984). Observation of chaotic behavior in an electron-hole plasma in GE, Physical Review Letters 52(12): 1037–1040.
[19] Kaneko, K. (1990). Simulating Physics with Coupled Map Lattices, World Scientific Publishing Co., Singapore.
[20] Korus, Ł. (2011). Simple environment for developing methods of controlling chaos in spatially distributed systems, International Journal of Applied Mathematics and Computer Science 21(1): 149–159, DOI: 10.2478/v10006-011-0011-4.
[21] Langenberg, J., Pfister, G. and Abshagen, J. (2004). Chaos from Hopf bifurcation in a fluid flow experiment, Physical Review E 70(1): 1–5.
[22] Lasota, A. and Mackey, M. (1997). Chaos, Fractals, and Noise, Springer, New York, NY.
[23] Mitkowski, P.J. and Mitkowski, W. (2012). Ergodic theory approach to chaos: Remarks and computational aspects, International Journal of Applied Mathematics and Computer Science 22(2): 259–267, DOI: 10.2478/v10006-012-0019-4.
[24] Ogorzałek, M.J., Galias, Z., Dabrowski, W. and Dabrowski, A. (1996a). Spatio-temporal co-operative phenomena in CNN arrays composed of chaotic circuits simulation experiments, International Journal of Circuit Theory and Applications 24(3): 261–268.
[25] Ogorzałek, M.J., Galias, Z., Dabrowski, W. and Dabrowski, A. (1996b). Wave propagation, pattern formation and memory effects in large arrays of interconnected chaotic circuits, International Journal of Bifurcation and Chaos 6(10): 1859–1871.
[26] Ott, E. (2002). Chaos in Dynamical Systems, Cambridge University Press, Cambridge.
[27] Ott, E., Grebogi, C. and Yorke, J.A. (1990). Controlling chaos, Physical Review Letters 64(11): 1196–1199.
[28] Parmananda, P. (1997). Controlling turbulence in coupled map lattice systems using feedback techniques, Physical Review E 56(1): 239–244.
[29] Procaccia, I. and Meron, E. (1986). Low-dimensional chaos in surface waves: Theoretical analysis of an experiment, Physical Review A 34(4): 3221–3237.
[30] Pyragas, K. (2001). Control of chaos via an unstable delayed feedback controller, Physical Review Letters 86(11): 2265–2268.
[31] Sauer, T., Yorke, J., and Casdagli, M. (1991). Embedology, Journal of Statistical Physics 65(3–4): 579–616.
[32] Singer, J., Wang, Y. and Haim, H.B. (1991). Controlling a chaotic system, Physical Review Letters 66(9): 1123–1125.
[33] Stark, J. (1999). Delay embeddings for forced systems, I: Deterministic forcing, Jouranl of Nonlinear Science 9(3): 255–332.
[34] Takens, F. (1981). Detecting Strange Attractors in Turbulence, Springer-Verlag, Berlin.
[35] Used, J. and Martin, J.C. (2010). Multiple topological structures of chaotic attractors ruling the emission of a driven laser, Physical Review E 82(1): 1–7.
[36] Wei, W., Zonghua, L. and Bambi, H. (2000). Phase order in chaotic maps and in coupled map lattices, Physical Review Letters 84(12): 2610–2613.
[37] Yamada, T. and Graham, R. (1980). Chaos in a laser system under a modulated external field, Physical Review Letters 45(16): 1322–1324.
[38] Yim, G., Ryu, J., Park, Y., Rim, S., Lee, S., Kye, W. and Kim, C. (2004). Chaotic behaviors of operational amplifiers, Physical Review E 69(1): 1–4.