On an infinite dimensional linear-quadratic problem with fixed endpoints: The continuity question
International Journal of Applied Mathematics and Computer Science, Tome 24 (2014) no. 4, pp. 723-733.

Voir la notice de l'article provenant de la source Library of Science

In a Hilbert space setting, necessary and sufficient conditions for the minimum norm solution u to the equation Su = Rz to be continuously dependent on z are given. These conditions are used to study the continuity of minimum energy and linear-quadratic control problems for infinite dimensional linear systems with fixed endpoints.
Keywords: minimum norm problem, linear quadratic control, linear quadratic economie, controllability, optimal control
Mots-clés : sterowanie liniowo-kwadratowe, sterowalność, sterowanie optymalne
@article{IJAMCS_2014_24_4_a1,
     author = {Przy{\l}uski, K. M.},
     title = {On an infinite dimensional linear-quadratic problem with fixed endpoints: {The} continuity question},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {723--733},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_4_a1/}
}
TY  - JOUR
AU  - Przyłuski, K. M.
TI  - On an infinite dimensional linear-quadratic problem with fixed endpoints: The continuity question
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2014
SP  - 723
EP  - 733
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_4_a1/
LA  - en
ID  - IJAMCS_2014_24_4_a1
ER  - 
%0 Journal Article
%A Przyłuski, K. M.
%T On an infinite dimensional linear-quadratic problem with fixed endpoints: The continuity question
%J International Journal of Applied Mathematics and Computer Science
%D 2014
%P 723-733
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_4_a1/
%G en
%F IJAMCS_2014_24_4_a1
Przyłuski, K. M. On an infinite dimensional linear-quadratic problem with fixed endpoints: The continuity question. International Journal of Applied Mathematics and Computer Science, Tome 24 (2014) no. 4, pp. 723-733. http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_4_a1/

[1] Athans, M. (1971). The role and use of the stochastic linear-quadratic-Gaussian problem in control system design, IEEE Transactions on Automatic Control, AC-16(6): 529–552.

[2] Aubin, J.-P. (2000). Applied Functional Analysis, Wiley, New York, NY.

[3] Balakrishnan, A.V. (1981). Applied Functional Analysis, Springer, New York, NY.

[4] Brockett, R.F. (1970). Finite-Dimensional Linear Systems, Wiley, New York, NY.

[5] Chow, G.P. (1976). Analysis and Control of Dynamic Economic Systems, Wiley, New York, NY.

[6] Corless, M.J. and Frazho, A.E. (2003). Linear Systems and Control. An Operator Perspective, Marcel Dekker, New York, NY.

[7] Curtain, R.F. (1984). Linear-quadratic control problem with fixed endpoints in infinite dimensions, Journal of Optimization Theory and Its Applications 44(1): 55–74.

[8] Curtain, R.F. and Pritchard A.J. (1978). Infinite-Dimensional Linear Systems Theory, Springer, Berlin.

[9] Curtain, R.F. and Zwart H. (1995). An Introduction to Infinite-Dimensional Linear Systems Theory, Springer, New York, NY.

[10] Douglas, R.G. (1966). On majorization, factorization, and range inclusion of operators on Hilbert space, Proceedings of the American Mathematical Society 18(2): 413–415.

[11] Emirsajłow, Z. (1989). Feedback control in LQCP with a terminal inequality constraint, Journal of Optimization Theory and Applications 62(3): 387–403.

[12] Evans, L.C. (2010). Partial Differential Equations, American Mathematical Society, Providence RI.

[13] Federico, S. (2011). A stochastic control problem with delay arising in a pension fund model, Finance and Stochastics 15(3): 421–459.

[14] Fuhrmann, P.A. (1972). On weak and strong reachability and controllability of infinite-dimensional linear systems, Journal of Optimization Theory and Its Applications 9(2): 77–89.

[15] Kandilakis, D. and Papageorgiou, N.S. (1992). Evolution inclusions of the subdifferential type depending on a parameter, Commentationes Mathematicae Universitatis Carolinae 33(3): 437–449.

[16] Kendrick, D.A. (1981). Stochastic Control for Economic Models, McGraw-Hill, New York, NY.

[17] Kobayashi, T. (1978). Some remarks on controllability for distributed parameter systems, SIAM Journal on Control and Optimization 16(5): 733–742.

[18] Laurent, P.-J. (1972). Approximation et Optimisation, Hermann, Paris.

[19] Ljungqvist, L. and Sargent, T.J. (2004). Recursive Macroeconomic Theory, MIT Press, Cambridge, MA.

[20] Luenberger, D.G. (1969). Optimization by Vector Space Methods, Wiley, New York, NY.

[21] Papageorgiou, N.S. (1991). On the dependence of the solutions and optimal solutions of control problems on the control constraint set, Journal of Mathematical Analysis and Applications 158(2): 427–447.

[22] Porter, W.A. (1966). Modern Foundations of System Engineering, Macmillan, New York, NY.

[23] Przyłuski, K.M. (1981). Remarks on continuous dependence of an optimal control on parameters, in O. Moeschlin and D. Pallaschke (Eds.), Game Theory and Mathematical Economics, North-Holland, Amsterdam, pp. 333–337.

[24] Rolewicz, S. (1987). Functional Analysis and Control Theory. Linear Systems, PWN, Warsaw, (in Polish).

[25] Sent, E.-M. (1998). The Evolving Rationality of Rational Expectations: An Assessment of Thomas Sargent’s A-chievements, Cambridge University Press, Cambridge.

[26] Triggiani, R. (1975a). A note on the lack of exact controllability for mild solutions in Banach spaces, SIAM Journal on Control and Optimization 15(3): 407–411.

[27] Triggiani, R. (1975b). On the lack of exact controllability for mild solutions in Banach spaces, Journal of Mathematical Analysis and Applications 50(2): 438–446.

[28] Triggiani, R. (1976). Extensions of rank conditions for controllability and observability to Banach spaces and unbounded operators, SIAM Journal on Control and Optimization 14(2): 313–338.