Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2014_24_4_a0, author = {Balachandran, K. and Divya, S.}, title = {Controllability of nonlinear implicit fractional integrodifferential systems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {713--722}, publisher = {mathdoc}, volume = {24}, number = {4}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_4_a0/} }
TY - JOUR AU - Balachandran, K. AU - Divya, S. TI - Controllability of nonlinear implicit fractional integrodifferential systems JO - International Journal of Applied Mathematics and Computer Science PY - 2014 SP - 713 EP - 722 VL - 24 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_4_a0/ LA - en ID - IJAMCS_2014_24_4_a0 ER -
%0 Journal Article %A Balachandran, K. %A Divya, S. %T Controllability of nonlinear implicit fractional integrodifferential systems %J International Journal of Applied Mathematics and Computer Science %D 2014 %P 713-722 %V 24 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_4_a0/ %G en %F IJAMCS_2014_24_4_a0
Balachandran, K.; Divya, S. Controllability of nonlinear implicit fractional integrodifferential systems. International Journal of Applied Mathematics and Computer Science, Tome 24 (2014) no. 4, pp. 713-722. http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_4_a0/
[1] Anichini, G., Conti, G. and Zecca, P. (1986). A note on controllability of certain nonlinear system, Note di Mathematica 6(2): 99–111.
[2] Balachandran, K. (1988). Controllability of nonlinear systems with implicit derivatives, IMA Journal of Mathematical Control and Information 5(2): 77–83.
[3] Balachandran, K. and Dauer, J.P. (1987). Controllability of nonlinear systems via fixed point theorems, Journal of Optimization Theory and Applications 53(3): 345–352.
[4] Balachandran, K. and Balasubramaniam, P. (1992). A note on controllability of nonlinear Volterra integrodifferential systems, Kybernetika 28(4): 284–291.
[5] Balachandran, K. and Balasubramaniam, P. (1994). Controllability of nonlinear neutral Volterra integrodifferential systems, Journal of the Australian Mathematical Society 36(1): 107–116.
[6] Balachandran, K. and Kokila, J. (2012a). On the controllability of fractional dynamical systems, International Journal of Applied Mathematics and Computer Science 22(3): 523–531, DOI: 10.2478/v10006-012-0039-0.
[7] Balachandran, K. and Kokila, J. (2013a). Constrained controllability of fractional dynamical systems, Numerical Functional Analysis and Optimization 34(11): 1187–1205.
[8] Balachandran, K. and Kokila, J. (2013b). Controllability of nonlinear implicit fractional dynamical systems, IMA Journal of Applied Mathematics 79(3): 562–570.
[9] Balachandran, K., Kokila, J. and Trujillo, J.J. (2012b). Relative controllability of fractional dynamical systems with multiple delays in control, Computers and Mathematics with Applications 64(10): 3037–3045.
[10] Balachandran, K., Park, J.Y. and Trujillo, J.J. (2012c). Controllability of nonlinear fractional dynamical systems, Nonlinear Analysis: Theory, Methods and Applications 75(4): 1919–1926.
[11] Balachandran, K., Zhou, Y. and J. Kokila, J. (2012d). Relative controllability of fractional dynamical systems with delays in control, Communications in Nonlinear Science and Numerical Simulation 17(9): 3508–3520.
[12] Burton, T.A. (1983). Volterra Integral and Differential Equations, Academic Press, New York, NY.
[13] Caputo, M. (1967). Linear model of dissipation whose Q is almost frequency independent, Part II, Geophysical Journal of Royal Astronomical Society 13(5): 529–539.
[14] Dacka, C. (1980). On the controllability of a class of nonlinear systems, IEEE Transaction on Automatic Control 25(2): 263–266.
[15] Kaczorek, K. (2011). Selected Problems of Fractional Systems Theory, Springer, Berlin.
[16] Kexue, L. and Jigen, P. (2011). Laplace transform and fractional differential equations, Applied Mathematics Letters 24(12): 2019–2013.
[17] Kilbas, A.A., Srivastava, H.M. and Trujillo, J.J. (2006). Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam.
[18] Klamka, J. (1975a). On the global controllability of perturbed nonlinear systems, IEEE Transactions on Automatic Control AC-20(1): 170–172.
[19] Klamka, J. (1975b). On the local controllability of perturbed nonlinear systems, IEEE Transactions on Automatic Control AC-20(2): 289–291.
[20] Klamka, J. (1975c). Controllability of nonlinear systems with delays in control, IEEE Transactions on Automatic Control AC-20(5): 702–704.
[21] Klamka, J. (1993). Controllability of Dynamical Systems, Kluwer Academic, Dordrecht.
[22] Klamka, J. (1999). Constrained controllability of dynamic systems, International Journal of Applied Mathematics and Computer Science 9(2): 231–244.
[23] Klamka, J. (2000). Schauder’s fixed-point theorem in nonlinear controllability problems, Control and Cybernetics 29(1): 153–165.
[24] Klamka, J. (2001). Constrained controllability of semilinear delayed systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 49(3): 505–515.
[25] Klamka, J. (2008). Constrained controllability of semilinear systems with delayed controls, Bulletin of the Polish Academy of Sciences: Technical Sciences 56(4): 333–337.
[26] Klamka, J. (2010). Controllability and minimum energy control problem of fractional discrete time systems, in D. Baleanu, Z.B. Guvenc, and J.A.T. Machado (Eds.), New Trends in Nanotechnology and Fractional Calculus, Springer-Verlag, New York, NY, pp. 503–509.
[27] Miller, K.S. and Ross, B. (1993). An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, NY.
[28] Mittal, R.C. and Nigam, R. (2008). Solution of fractional integrodifferential equations by Adomian decomposition method, International Journal of AppliedMathematics and Mechanics 4(2): 87–94.
[29] Oldham, K.B and Spanier, J. (1974). The Fractional Calculus, Academic Press, London.
[30] Olmstead, W.E. and Handelsman, R.A. (1976). Diffusion in a semi-infinite region with nonlinear surface dissipation, SIAM Review 18(2): 275–291.
[31] Podlubny, I. (1999). Fractional Differential Equations, Academic Press, New York, NY.
[32] Rawashdeh, E.A. (2011). Legendre wavelets method for fractional integrodifferential equations, Applied Mathematical Sciences 5(2): 2467–2474.
[33] Sadovskii, J.B. (1972). Linear compact and condensing operator, Russian Mathematical Surveys 27(1): 85–155.
[34] Sabatier, J., Agarwal, O.P. and Tenreiro Machado, J.A. (Eds.) (2007). Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Springer-Verlag, New York, NY.
[35] Samko, S.G., Kilbas, A.A. and Marichev, O.I. (1993). Fractional Integrals and Derivatives; Theory and Applications, Gordon and Breach, Amsterdam.