Minimum energy control of fractional positive continuous-time linear systems with bounded inputs
International Journal of Applied Mathematics and Computer Science, Tome 24 (2014) no. 2, pp. 335-340.

Voir la notice de l'article provenant de la source Library of Science

A minimum energy control problem for fractional positive continuous-time linear systems with bounded inputs is formulated and solved. Sufficient conditions for the existence of a solution to the problem are established. A procedure for solving the problem is proposed and illustrated with a numerical example.
Keywords: fractional system, positive system, minimum energy control, bounded input
Mots-clés : układ ułamkowy, układ dodatni, sterowanie energooszczędne
@article{IJAMCS_2014_24_2_a8,
     author = {Kaczorek, T.},
     title = {Minimum energy control of fractional positive continuous-time linear systems with bounded inputs},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {335--340},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_2_a8/}
}
TY  - JOUR
AU  - Kaczorek, T.
TI  - Minimum energy control of fractional positive continuous-time linear systems with bounded inputs
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2014
SP  - 335
EP  - 340
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_2_a8/
LA  - en
ID  - IJAMCS_2014_24_2_a8
ER  - 
%0 Journal Article
%A Kaczorek, T.
%T Minimum energy control of fractional positive continuous-time linear systems with bounded inputs
%J International Journal of Applied Mathematics and Computer Science
%D 2014
%P 335-340
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_2_a8/
%G en
%F IJAMCS_2014_24_2_a8
Kaczorek, T. Minimum energy control of fractional positive continuous-time linear systems with bounded inputs. International Journal of Applied Mathematics and Computer Science, Tome 24 (2014) no. 2, pp. 335-340. http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_2_a8/

[1] Busłowicz, M. (2008). Stability of linear continuous time fractional order systems with delays of the retarded type, Bulletin of the Polish Academy of Sciences: Technical Sciences 56(4): 319–324.

[2] Dzieliński, A., Sierociuk, D. and Sarwas, G. (2009). Ultracapacitor parameters identification based on fractional order model, Proceedings of ECC’09, Budapest, Hungary.

[3] Dzieliński, A. and Sierociuk, D. (2008). Stability of discrete fractional order state-space systems, Journal of Vibrations and Control 14(9/10): 1543–1556.

[4] Farina, L. and Rinaldi, S. (2000). Positive Linear Systems: Theory and Applications, J. Wiley, New York, NY.

[5] Kaczorek, T. (1992). Linear Control Systems, Research Studies Press and J. Wiley, New York, NY.

[6] Kaczorek, T. (2001). Positive 1D and 2D Systems, Springer-Verlag, London.

[7] Kaczorek, T. (2008a). Fractional positive continuous-time systems and their reachability, International Journal of Applied Mathematics and Computer Science 18(2): 223–228, DOI: 10.2478/v10006-008-0020-0.

[8] Kaczorek, T. (2008b). Practical stability of positive fractional discrete-time linear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 56(4): 313–317.

[9] Kaczorek, T. (2008c). Reachability and controllability to zero tests for standard and positive fractional discrete-time systems, Journal Européen des Systémes Automatisés 42(6–8): 769–787.

[10] Kaczorek, T. (2009). Asymptotic stability of positive fractional 2D linear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 57(3): 289–292.

[11] Kaczorek, T. (2011a). Controllability and observability of linear electrical circuits, Electrical Review 87(9a): 248–254.

[12] Kaczorek, T. (2011b). Positivity and reachability of fractional electrical circuits, Acta Mechanica et Automatica 5(2): 42–51.

[13] Kaczorek, T. (2011c). Positive linear systems consisting of n subsystems with different fractional orders, IEEE Transactions Circuits and Systems 58(6): 1203–1210.

[14] Kaczorek, T. (2011d). Checking of the positivity of descriptor linear systems by the use of the shuffle algorithm, Archive of Control Sciences 21(3): 287–298.

[15] Kaczorek, T. (2012). Selected Problems of Fractional Systems Theory, Springer-Verlag, Berlin.

[16] Kaczorek, T. (2013a). Minimum energy control of fractional positive continuous-time linear systems, MMAR 2013, Międzyzdroje, Poland.

[17] Kaczorek, T. (2013c). Minimum energy control of positive discrete-time linear systems with bounded inputs, Archives of Control Sciences 23(2): 205–211.

[18] Kaczorek, T. (2013d). Minimum energy control of positive continuous-time linear systems with bounded inputs, International Journal of Applied Mathematics and Computer Science 23(4): 725–730, DOI: 10.2478/amcs-2013-0054.

[19] Kaczorek, T. (2014a). Minimum energy control of descriptor positive discrete-time linear systems, COMPEL 33(3).

[20] Kaczorek, T. (2014b). An extension of Klamka’s method of minimum energy control to fractional positive discrete-time linear systems with bounded inputs, Bulletin of the Polish Academy of Sciences: Technical Sciences 62(2), (in press).

[21] Kaczorek, T. and Klamka, J. (1986). Minimum energy control of 2D linear systems with variable coefficients, International Journal of Control 44(3): 645–650.

[22] Klamka, J. (1976a). Relative controllability and minimum energy control of linear systems with distributed delays in control, IEEE Transactions on Automatic Control 21(4): 594–595.

[23] Klamka, J. (1976b). Relative controllability and minimum energy control of linear systems with distributed delays in control, IEEE Transactions on Automatic Control 21(4): 594–595.

[24] Klamka, J. (1977). Minimum energy control of discrete systems with delays in control, International Journal of Control 26(5): 737–744.

[25] Klamka, J. (1983). Minimum energy control of 2D systems in Hilbert spaces, System Sciences 9(1–2): 33–42.

[26] Klamka, J. (1991). Controllability of Dynamical Systems, Kluwer Academic Press, Dordrecht.

[27] Klamka, J. (2010). Controllability and minimum energy control problem of fractional discrete-time systems, in D. Baleanu, Z.B. Guvenc and J.A. Tenreiro Machado (Eds.), New Trends Nanotechology and Fractional Calculus, Springer-Verlag, New York, NY, pp. 503–509.

[28] Oldham, K.B. and Spanier, J. (1974). The Fractional Calculus, Academic Press, New York, NY.

[29] Ostalczyk, P. (2008). Epitome of the Fractional Calculus: Theory and Its Applications in Automatics, Technical University of Łódź Press, Łódź, (in Polish).

[30] Podlubny, I. (1999). Fractional Differential Equations, Academic Press, San Diego, CA.

[31] Radwan, A.G., Soliman, A.M., Elwakil, A.S. and Sedeek, A. (2009). On the stability of linear systems with fractional-order elements, Chaos, Solitons and Fractals 40(5): 2317–2328.

[32] Solteiro Pires, E.J., Tenreiro Machado, J.A. and Moura Oliveira, P.B. (2006). Fractional dynamics in genetic algorithms, Workshop on Fractional Differentiation and Its Application, Porto, Portugal, Vol. 2, pp. 414–419.

[33] Vinagre, B.M. (2002). Fractional order systems and fractional order control actions, IEEE CDC’02, Las Vegas, USA, NV, TW#2, Lecture 3.