Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2014_24_2_a1, author = {Garda, B. and Galias, Z.}, title = {Tikhonov regularization and constrained quadratic programming for magnetic coil design problems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {249--257}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_2_a1/} }
TY - JOUR AU - Garda, B. AU - Galias, Z. TI - Tikhonov regularization and constrained quadratic programming for magnetic coil design problems JO - International Journal of Applied Mathematics and Computer Science PY - 2014 SP - 249 EP - 257 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_2_a1/ LA - en ID - IJAMCS_2014_24_2_a1 ER -
%0 Journal Article %A Garda, B. %A Galias, Z. %T Tikhonov regularization and constrained quadratic programming for magnetic coil design problems %J International Journal of Applied Mathematics and Computer Science %D 2014 %P 249-257 %V 24 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_2_a1/ %G en %F IJAMCS_2014_24_2_a1
Garda, B.; Galias, Z. Tikhonov regularization and constrained quadratic programming for magnetic coil design problems. International Journal of Applied Mathematics and Computer Science, Tome 24 (2014) no. 2, pp. 249-257. http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_2_a1/
[1] Bro, R. and Jong, S.D. (1997). A fast non-negativityconstrained least squares algorithm, Journal of Chemometrics 11(5): 393–401.
[2] Fisher, B.J., Dillon, N., Carpenter, T.A. and Hall, L.D. (1997). Design of a biplanar gradient coil using a genetic algorithm, Magnetic Resonance Imaging 15(3): 369–376.
[3] Garda, B. (2012). Linear algebra approach and the quasi-Newton algorithm for the optimal coil design problem, Przegląd Elektrotechniczny (7a): 261–264.
[4] Garda, B. and Galias, Z. (2010). Comparison of the linear algebra approach and the evolutionary computing for magnetic field shaping in linear coils, Nonlinear Theory and Its Applications, NOLTA 2010, Cracow, Poland, pp. 508–511.
[5] Garda, B. and Galias, Z. (2012). Non-negative least squares and the Tikhonov regularization methods for coil design problems, Proceedings of the International Conference on Signals and Electronic Systems, ICSES 2012, Wrocław, Poland.
[6] Hansen, P. (1998). Regularization Tools: A Matlab Package for Analysis and Solution of Discrete Ill-posed Problems. Version 3.0 for Matlab 5.2, IMM-REP, Institut for Matematisk Modellering, Danmarks Tekniske Universitet, Kongens Lyngby.
[7] Jin, J. (1999). Electromagnetic Analysis and Design in Magnetic Resonance Imaging, Biomedical Engineering Series, CRC Press, Boca Raton, FL.
[8] Lawson, C. and Hanson, R. (1987). Solving Least Squares Problems, Classics in Applied Mathematics, Society for Industrial and Applied Mathematics, Philadelphia, PA.
[9] Macovski, A., Xu, H., Conolly, S. and Scott, G. (2000). Homogeneous magnet design using linear programing, IEEE Transactions on Magnetics 36(2): 476–483.
[10] Prasath, V.B.S. (2011). A well-posed multiscale regularization scheme for digital image denoising, International Journal of Applied Mathematics and Computer Science 21(4): 769–777, DOI: 10.2478/v10006-011-0061-7.
[11] Sikora, R., Krasoń, P. and Gramz, M. (1980). Magnetic field synthesis at the plane perpendicular to the axis of solenoid, Archiv fur elektrotechnik 62(3): 135–156.
[12] Szynkiewicz, W. and Błaszczyk, J. (2011). Optimization-based approach to path planning for closed chain robot systems, International Journal of Applied Mathematics and Computer Science 21(4): 659–670, DOI: 10.2478/v10006-011-0052-8.
[13] Tikhonov, A. and Arsenin, V. (1977). Solutions of Ill-posed Problems, Scripta Series in Mathematics, John Wiley, Washington, DC.
[14] Turner, R. (1986). A target field approach to optimal coil design, Journal of Physics D: Applied Physics 19(8): 147–151.
[15] Voglis, C. and Lagaris, I. (2004). BOXCQP: An algorithm for bound constrained convex quadratic problems, Proceedings of the 1st International Conference: From Scientific Computing to Computational Engineering, IC-SCCE, Athens, Greece.
[16] Xu, H., Conolly, S., Scott, G. and Macovski, A. (1999). Fundamental scaling relations for homogeneous magnets, ISMRM 7th Scientific Meeting, Philadelphia, PA, USA, p. 475.
[17] Zhu, M., Xia, L., Liu, F., Zhu, J., L.Kang and Crozier, S. (2012). Finite difference method for the design of gradient coils in MRI—Initial framework, IEEE Transactions on Biomedical Engineering 59(9): 2412–2421.