On attaining the prescribed quality of a controlled fourth order system
International Journal of Applied Mathematics and Computer Science, Tome 24 (2014) no. 1, pp. 75-85.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we discuss a method of auxiliary controlled models and its application to solving some robust control problems for a system described by differential equations. As an illustration, a system of nonlinear differential equations of the fourth order is used. A solution algorithm, which is stable with respect to informational noise and computational errors, is presented. The algorithm is based on a combination of online state/input reconstruction and feedback control methods.
Keywords: auxiliary model, feedback control, online reconstruction
Mots-clés : model pomocniczy, sprzężenie zwrotne, rekonstrukcja
@article{IJAMCS_2014_24_1_a5,
     author = {Kapustyan, V. and Maksimov, V.},
     title = {On attaining the prescribed quality of a controlled fourth order system},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {75--85},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_1_a5/}
}
TY  - JOUR
AU  - Kapustyan, V.
AU  - Maksimov, V.
TI  - On attaining the prescribed quality of a controlled fourth order system
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2014
SP  - 75
EP  - 85
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_1_a5/
LA  - en
ID  - IJAMCS_2014_24_1_a5
ER  - 
%0 Journal Article
%A Kapustyan, V.
%A Maksimov, V.
%T On attaining the prescribed quality of a controlled fourth order system
%J International Journal of Applied Mathematics and Computer Science
%D 2014
%P 75-85
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_1_a5/
%G en
%F IJAMCS_2014_24_1_a5
Kapustyan, V.; Maksimov, V. On attaining the prescribed quality of a controlled fourth order system. International Journal of Applied Mathematics and Computer Science, Tome 24 (2014) no. 1, pp. 75-85. http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_1_a5/

[1] Blizorukova, M.S. and Maksimov, V.I. (2006). A control problem under incomplete information, Automation and Remote Control 67(3): 131–142.

[2] Blizorukova, M.S. and Maksimov, V.I. (2010). On some dynamical reconstruction problems for a nonlinear system of the second-order, Opuscula Mathematica 30(4): pp. 399–410.

[3] Keesman, K.J. and Maksimov, V.I. (2008). On feedback identification of unknown characteristics: A bioreactor case study, International Journal of Control 81(1): 134–145.

[4] Krasovskii, N.N. and Subbotin, A.I. (1988). Game-Theoretical Control Problems, Springer Verlag, New York, NY/Berlin.

[5] Maksimov, V. (2010). On one algorithm for solving the problem of source function reconstruction, International Journal of Applied Mathematics and Computer Science 20(2): 239–247, DOI: 10.2478/v10006-010-0017-3.

[6] Maksimov, V.I. (2011). The tracking of the trajectory of a dynamical system Journal of Applied Mathematics and Mechanics 75(6): 667–674.

[7] Maksimov, V.I. (2013). On reconstruction of controls in uniform metric Journal of Applied Mathematics and Mechanics 77(2): 292–301.

[8] Nordhaus, W.D. (1994). Managing the Global Commons. The Economics of Climate Change, MIT Press, Cambridge, MA/London.

[9] Osipov, Yu.S. and Kryazhimskii, A.V. (1995). Inverse Problems of Ordinary Differential Equations: Dynamical Solutions, Gordon and Breach, London.

[10] Osipov, Yu.S., Kryazhimskii, A.V. and Maksimov, V.I. (2011). Methods of Dynamical Reconstruction of Inputs of Control Systems, UB RAS, Ekaterinburg, (in Russian).