Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2013_23_4_a14, author = {Gao, J. Q. and Fan, L. Y. and Li, L. and Xu, L. Z.}, title = {A practical application of kernel-based fuzzy discriminant analysis}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {887--903}, publisher = {mathdoc}, volume = {23}, number = {4}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_4_a14/} }
TY - JOUR AU - Gao, J. Q. AU - Fan, L. Y. AU - Li, L. AU - Xu, L. Z. TI - A practical application of kernel-based fuzzy discriminant analysis JO - International Journal of Applied Mathematics and Computer Science PY - 2013 SP - 887 EP - 903 VL - 23 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_4_a14/ LA - en ID - IJAMCS_2013_23_4_a14 ER -
%0 Journal Article %A Gao, J. Q. %A Fan, L. Y. %A Li, L. %A Xu, L. Z. %T A practical application of kernel-based fuzzy discriminant analysis %J International Journal of Applied Mathematics and Computer Science %D 2013 %P 887-903 %V 23 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_4_a14/ %G en %F IJAMCS_2013_23_4_a14
Gao, J. Q.; Fan, L. Y.; Li, L.; Xu, L. Z. A practical application of kernel-based fuzzy discriminant analysis. International Journal of Applied Mathematics and Computer Science, Tome 23 (2013) no. 4, pp. 887-903. http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_4_a14/
[1] Aydilek, I.B. and Arslan, A. (2012). A novel hybrid approach to estimating missing values in databases using k-nearest neighbors and neural networks, International Journal of Innovative Computing, Information and Control 7(8): 4705–4717.
[2] Baudat, G. and Anouar, F. (2000). Generalized discriminant analysis using a kernel approach, Neural Computation 12(10): 2385–2404.
[3] Belhumeur, P.N. and Kriegman, D.J. (1997). Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection, IEEE Transactions on Pattern Analysis Machine Intelligence 19(7): 711–720.
[4] Chen, L.F., Liao, H. Y.M., Ko, M.T., Lin, J.C. and Yu, G.J. (2000). A new LDA-based face recognition system which can solve the small sample size problem, Pattern Recognition 33(10): 1713–1726.
[5] Cover, T.M. (1965). Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition, IEEE Transactions on Electronic Computers 14(3): 326–334.
[6] Demsar, J. (2006). Statistical comparisons of classifiers over multiple data sets, The Journal of Machine Learning Research 7(1): 1–30.
[7] Dietterich, T.G. (1998). Approximate statistical tests for comparing supervised classification learning algorithms, Neural Computation 10(7): 1895–1923.
[8] Duda, R.O., Hart, P.E. and Stork, D.G. (2012). Pattern Classification, John Wiley and Sons, New York, NY.
[9] Friedman, J.H. (1989). Regularized discriminant analysis, Journal of the American Statistical Association 84(405): 165–175.
[10] Fukunaga, K. (1990). Introduction to Statistical Pattern Recognition, San Diego, California, CA.
[11] Gao, J. and Fan, L. (2011). Kernel-based weighted discriminant analysis with QR decomposition and its application face recognition, WSEAS Transactions on Mathematics 10(10): 358–367.
[12] Gao, J., Fan, L. and Xu, L. (2012). Solving the face recognition problem using QR factorization, WSEAS Transactions on Mathematics 11(1): 728–737.
[13] Gao, J.Q., Fan, L.Y. and Xu, L.Z. (2013). Median null (sw)-based method for face feature recognition, Applied Mathematics and Computation 219(12): 6410–6419.
[14] Gao, Q.X., Zhang, L. and Zhang, D. (2008). Face recognition using FLDA with single training image per person, Applied Mathematics and Computation 205(2): 726–734.
[15] Hastie, T., Buja, A. and Tibshirani, R. (1995). Penalized discriminant analysis, The Annals of Statistics 23(1): 73–102.
[16] Hastie, T., Tibshirani, R. and Buja, A. (1994). Flexible discriminant analysis by optimal scoring, Journal of the American Statistical Association 89(428): 1255–1270.
[17] Hastie, T., Tibshirani, R., Friedman, J. and Franklin, J. (1991). The elements of statistical learning: Data mining, inference and prediction, The Mathematical Intelligencer 27(2): 83–85.
[18] Hong, Z.Q. and Yang, J.Y. (2005). Optimal discriminant plane for a small number of samples and design method of classifier on the plane, Pattern Recognition 24(4): 317–324.
[19] Jain, A. and Zongker, D. (1997). Feature selection: Evaluation, application, and small sample performance, IEEE Transactions on Pattern Analysis and Machine Intelligence 19(2): 153–158.
[20] Keller, J.M., Gray, M.R. and Givens, J.A. (1985). A fuzzy k-nearest neighbor algorithm, IEEE Transactions on Systems, Man and Cybernetics 15(4): 580–585.
[21] Koc, M. and Barkana, A. (2011). A new solution to one sample problem in face recognition using FLDA, Applied Mathematics and Computation 217(24): 10368–10376.
[22] Kwak, K.C. and Pedrycz, W. (2005). Face recognition using a fuzzy Fisherface classifier, Pattern Recognition 38(10): 1717–1732.
[23] Lee, H.M., Chen, C.M., Chen, J.M. and Jou, Y.L. (2001). An efficient fuzzy classifier with feature selection based on fuzzy entropy, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 31(3): 426–432.
[24] Liu, F. and Xue, X. (2012). Constructing kernels by fuzzy rules for support vector regressions, International Journal of Innovative Computing, Information and Control 8(7): 4811–4822.
[25] Liu, Y. (2006). Website of the ORL face database, http://www.cam-orl.co.uk.
[26] Liu, Y., Liu, X. and Su, Z. (2008). A new fuzzy approach for handling class labels in canonical correlation analysis, Neurocomputing 71(7): 1735–1740.
[27] Loog, M., Duin, R.P.W. and Haeb-Umbach, R. (2001). Multiclass linear dimension reduction by weighted pairwise fisher criteria, IEEE Transactions on Pattern Analysis and Machine Intelligence 23(7): 762–766.
[28] Pahasa, J. and Ngamroo, I. (2012). PSO based kernel principal component analysis and multi-class support vector machine for power quality problem classification, International Journal of Innovative Computing, Information and Control 8(3): 1523–1539.
[29] Pal, N.R. and Eluri, V.K. (1998). Two efficient connectionist schemes for structure preserving dimensionality reduction, IEEE Transactions on Neural Networks 9(6): 1142–1154.
[30] Phillips, P.J. (2004). Website of the facial recognition technology (FERET) database, http://www.itl.nist.gov/iad/humanid/feret/feret-master.html.
[31] Raudys, S.J. and Jain, A.K. (1991). Small sample size effects in statistical pattern recognition: Recommendations for practitioners, IEEE Transactions on Pattern Analysis and Machine Intelligence 13(3): 252–264.
[32] Schölkopf, B., Smola, A. and Müller, K.R. (1998). Nonlinear component analysis as a kernel eigenvalue problem, Neural Computation 10(5): 1299–1319.
[33] Swets, D.L. and Weng, J.J. (1996). Using discriminant eigenfeatures for image retrieval, IEEE Transactions on Pattern Analysis and Machine Intelligence 18(8): 831–836.
[34] Świercz, E. (2010). Classification in the Gabor time-frequency domain of non-stationary signals embedded in heavy noise with unknown statistical distribution, International Journal of Applied Mathematics and Computer Science 20(1): 135–147, DOI: 10.2478/v10006-010-0010-x.
[35] Vapnik, V.N. (1998). Statistical Learning Theory, Wiley, New York, NY.
[36] Woźniak, M. and Krawczyk, B. (2012). Combined classifier based on feature space partitioning, International Journal of Applied Mathematics and Computer Science 22(4): 855–866, DOI: 10.2478/v10006-012-0063-0.
[37] Wu, X.H. and Zhou, J.J. (2006). Fuzzy discriminant analysis with kernel methods, Pattern Recognition 39(11): 2236–2239.
[38] Yang, J., Frangi, A.F., Yang, J.Y., Zhang, D. and Jin, Z. (2005). KPCA plus LDA: A complete kernel Fisher discriminant framework for feature extraction and recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence 27(2): 230–244.
[39] Yang, J. and Yang, J.Y. (2001). An optimal FLD algorithm for facial feature extraction, Proceedings of SPIE Intelligent Robots and Computer Vision XX: Algorithms, Techniques, and Active Vision, Boston, MA, USA, pp. 438-444.
[40] Yang, J. and Yang, J.Y. (2003). Why can LDA be performed in PCA transformed space?, Pattern Recognition 36(2): 563–566.
[41] Yang, W., Wang, J., Ren, M., Zhang, L. and Yang, J. (2009). Feature extraction using fuzzy inverse FDA, Neurocomputing 73(13): 3384–3390.
[42] Yu, H. and Yang, J. (2001). A direct LDA algorithm for high-dimensional data with application to face recognition, Pattern Recognition 34(10): 2067–2070.
[43] Zadeh, L.A. (1965). Fuzzy sets, Information and Control 8(3): 338–353.
[44] Zheng, Y.J., Yang, J., Yang, J.Y. and Wu, X.J. (2006a). A reformative kernel Fisher discriminant algorithm and its application to face recognition, Neurocomputing 69(13): 1806–1810.
[45] Zheng, Y., Yang, J., Wang, W., Wang, Q., Yang, J. and Wu, X. (2006b). Fuzzy kernel Fisher discriminant algorithm with application to face recognition, 6th World Congress on Intelligent Control and Automation WCICA, Dalian, China, Vol. 2, pp. 9669–9672.
[46] Zhuang, X.S. and Dai, D.Q. (2005). Inverse Fisher discriminate criteria for small sample size problem and its application to face recognition, Pattern Recognition 38(11): 2192–2194.
[47] Zhuang, X.S. and Dai, D.Q. (2007). Improved discriminate analysis for high-dimensional data and its application to face recognition, Pattern Recognition 40(5): 1570–1578.