Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2013_23_4_a1, author = {Moodi, H. and Farrokhi, M.}, title = {Robust observer design for {Sugeno} systems with incremental quadratic nonlinearity in the consequent}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {711--723}, publisher = {mathdoc}, volume = {23}, number = {4}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_4_a1/} }
TY - JOUR AU - Moodi, H. AU - Farrokhi, M. TI - Robust observer design for Sugeno systems with incremental quadratic nonlinearity in the consequent JO - International Journal of Applied Mathematics and Computer Science PY - 2013 SP - 711 EP - 723 VL - 23 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_4_a1/ LA - en ID - IJAMCS_2013_23_4_a1 ER -
%0 Journal Article %A Moodi, H. %A Farrokhi, M. %T Robust observer design for Sugeno systems with incremental quadratic nonlinearity in the consequent %J International Journal of Applied Mathematics and Computer Science %D 2013 %P 711-723 %V 23 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_4_a1/ %G en %F IJAMCS_2013_23_4_a1
Moodi, H.; Farrokhi, M. Robust observer design for Sugeno systems with incremental quadratic nonlinearity in the consequent. International Journal of Applied Mathematics and Computer Science, Tome 23 (2013) no. 4, pp. 711-723. http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_4_a1/
[1] Abdelmalek, I., Golea, N. and Hadjili, M.L. (2007). A new fuzzy Lyapunov approach to non-quadratic stabilization of Takagi–Sugeno fuzzy models, International Journal of Applied Mathematics and Computer Science 17(1): 39–51, DOI: 10.2478/v10006-007-0005-4.
[2] Açikmese, A.B. and Corless, M. (2011). Observers for systems with nonlinearities satisfying incremental quadratic constraints, Automatica 47(7): 1339–1348.
[3] Asemani, M.H. and Majd, V.J. (2013). A robust observer-based controller design for uncertain T–S fuzzy systems with unknown premise variables via LMI, Fuzzy Sets and Systems 212: 21–40.
[4] Bernal, M. and Hušek, P. (2005). Non-quadratic performance design for Takagi–Sugeno fuzzy systems, International Journal of Applied Mathematics and Computer Science 15(3): 383–391.
[5] Boyd, S., Ghaoui, L.E., Feron, E. and Balakrishnan, V. (1994). Linear Matrix Inequalities in System and Control Theory, SIAM Studies in Applied Mathematics, Philadelphia, PA.
[6] Chadli, M. and Guerra, T.M. (2012). LMI solution for robust static output feedback control of discrete Takagi–Sugeno fuzzy models, IEEE Transactions on Fuzzy Systems 20(6): 1160–1165.
[7] Dong, J., Wang, Y. and Yang, G.H. (2011). H-infinity and mixed H2/H-infinity control of discrete-time T–S fuzzy systems with local nonlinear models,, Fuzzy Sets and Systems 164(1): 1–24.
[8] Dong, J., Wang, Y. and Yang, G.H. (2010). Output feedback fuzzy controller design with local nonlinear feedback laws for discrete-time nonlinear systems, IEEE Transactions on Systems, Man and Cybernetics, B: Cybernetics 40(6): 1447–1459.
[9] Faria, F.A., Silva, G.N. and Oliveira, V.A. (2012). Reducing the conservatism of LMI-based stabilisation conditions for T–S fuzzy systems using fuzzy Lyapunov functions, International Journal of Systems Science 44(10): 1956–1969, DOI: 10.1080/00207721.2012.670307.
[10] Guerra, T.M. and Bernal, M. (2012). Strategies to exploit non-quadratic local stability analysis, International Journal of Fuzzy Systems 14(3): 372–379.
[11] Guerra, T.M., Bernal, M., Guelton, K. and Labiod, S. (2012). Non-quadratic local stabilization for continuous-time Takagi–Sugeno models, Fuzzy Sets and Systems 201(16): 40–54.
[12] Guerra, T.M., Kruszewski, A. and Lauber, J. (2009). Discrete Tagaki–Sugeno models for control: Where are we?, Annual Reviews in Control 33(1): 37–47.
[13] Ichalal, D., Marx, B., Ragot, J. and Maquin, D. (2012). New fault tolerant control strategies for nonlinear Takagi–Sugeno systems, International Journal of Applied Mathematics and Computer Science 22(1): 197–210, DOI: 10.2478/v10006-012-0015-8.
[14] Karagiannis, D., Jiang, Z., Ortega, R. and Astolfi, A. (2005). Output-feedback stabilization of a class of uncertain non-minimum phase nonlinear systems, Automatica 41(9): 1609–1615.
[15] Löfberg, J. (2004). Yalmip: A toolbox for modeling and optimization in MATLAB, IEEE International Symposium on Computer Aided Control Systems Design, Taipei, Taiwan, pp. 284–289.
[16] Lee, C. (2004). Stabilization of nonlinear non-minimum phase system: Adaptive parallel approach using recurrent fuzzy neural network, IEEE Transactions on Systems, Man and Cybernetics, Part B 34(2): 1075–1088.
[17] Manai, Y. and Benrejeb, M. (2011). New condition of stabilization for continuous Takagi–Sugeno fuzzy system based on fuzzy Lyapunov function, International Journal of Control and Automation 4(3): 61–64.
[18] Mozelli, L.A., Palhares, R.M. and Avellar, G.S.C. (2009). A systematic approach to improve multiple Lyapunov function stability and stabilization conditions for fuzzy systems, Information Sciences 179(8): 1149–1162.
[19] Rajesh, R. and Kaimal, M.R. (2007). T–S fuzzy model with nonlinear consequence and PDC controller for a class of nonlinear control systems, Applied Soft Computing 7(3): 772–782.
[20] Rhee, B.J. and Won, S. (2006). A new fuzzy Lyapunov function approach for a Takagi–Sugeno fuzzy control system design, Fuzzy Sets and Systems 157(9): 1211–1228.
[21] Sala, A. (2009). On the conservativeness of fuzzy and fuzzy-polynomial control of nonlinear systems, Annual Reviews in Control 33(1): 48–58.
[22] Sala, A. and Arino, C. (2009). Polynomial fuzzy models for nonlinear control, a Taylor series approach, IEEE Transactions on Fuzzy Systems 17(6): 1284–1295.
[23] Tanaka, K. and Wang, H.O. (2001). Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach, John Wiley and Sons, Inc., New York, NY.
[24] Tseng, C.S., Chen, B.S. and Li, Y.F. (2009). Robust fuzzy observer-based fuzzy control design for nonlinear systems with persistent bounded disturbances: A novel decoupled approach, Fuzzy Sets and Systems 160(19): 2824–2843.
[25] Tuan, H.D., Apkarian, P., Narikiyo, T. and Yamamoto, Y. (2001). Parameterized linear matrix inequality techniques in fuzzy control system design, IEEE Transactions on Fuzzy Systems 9(2): 324–332.
[26] Xu, D., Jiang, B. and Shi, P. (2012). Nonlinear actuator fault estimation observer: An inverse system approach via a T–S fuzzy model, International Journal of Applied Mathematics and Computer Science 22(1): 183–196, DOI: 10.2478/v10006-012-0014-9.
[27] Yoneyama, J. (2009). H-infinity filtering for fuzzy systems with immeasurable premise variables: An uncertain system approach, Fuzzy Sets and Systems 160(12): 1738–1748.