Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2013_23_3_a11, author = {Florea, C. and Florea, L.}, title = {Parametric logarithmic type image processing for contrast based auto-focus in extreme lighting conditions}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {637--648}, publisher = {mathdoc}, volume = {23}, number = {3}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_3_a11/} }
TY - JOUR AU - Florea, C. AU - Florea, L. TI - Parametric logarithmic type image processing for contrast based auto-focus in extreme lighting conditions JO - International Journal of Applied Mathematics and Computer Science PY - 2013 SP - 637 EP - 648 VL - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_3_a11/ LA - en ID - IJAMCS_2013_23_3_a11 ER -
%0 Journal Article %A Florea, C. %A Florea, L. %T Parametric logarithmic type image processing for contrast based auto-focus in extreme lighting conditions %J International Journal of Applied Mathematics and Computer Science %D 2013 %P 637-648 %V 23 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_3_a11/ %G en %F IJAMCS_2013_23_3_a11
Florea, C.; Florea, L. Parametric logarithmic type image processing for contrast based auto-focus in extreme lighting conditions. International Journal of Applied Mathematics and Computer Science, Tome 23 (2013) no. 3, pp. 637-648. http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_3_a11/
[1] Byrski, W. and Byrski, J. (2012). The role of parameter constraints in EE and OE methods for optimal identification of continuous LTI models, International Journal of Applied Mathematics and Computer Science 22(2): 379–388, DOI: 10.2478/v10006-012-0028-3.
[2] Deng, G. (2009). An entropy interpretation of the logarithmic image processing model with application to contrast enhancement, IEEE Transactions on Image Processing 18(5): 1135–1140.
[3] Deng, G. (2012). A generalized logarithmic image processing model based on the giga-vision sensor model, IEEE Transactions on Image Processing 21(3): 1406–1414.
[4] Deng, G., Cahill, L.W. and Tobin, G.R. (1995). A study of logarithmic image processing model and its application to image enhancement, IEEE Transactions on Image Processing 4(4): 506–512.
[5] Fabijańska, A. (2012). A survey of subpixel edge detection methods for images of heat-emitting metal specimens, International Journal of Applied Mathematics and Computer Science 22(3): 695–710, DOI: 10.2478/v10006-012-0052-3.
[6] Fernandes, M., Gavet, Y. and Pinoli, J.C. (2010). Improving focus measurements using logarithmic image processing, Journal of Microscopy 242(3): 228–241, http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2818.2010.03461.x/abstract.
[7] Ferwerda, J.A., Pattanaik, S.N., Shirley, P. and Greenberg, D.P. (1996). A model of visual adaptation for realistic image synthesis, SIGGRAPH Conference Proceedings, New Orleans, LA, USA, pp. 249–258.
[8] Florea, C. and Florea, L. (2011). A parametric non-linear algorithm for contrast based autofocus, Proceedings of the IEEE International Conference on Intelligent Computer Communication and Processing, ICCP, Cluj, Romania, pp. 75–82.
[9] Florea, C., Vertan, C., Florea, L. and Sultana, A. (2009). Non-linear parametric derivation of contour detectors for cellular images, Proceedings of the IEEE International Symposium on Signals, Circuits and Systems, ISSCS, Iaşi, Romania, Vol. 2, pp. 321–325.
[10] Hefferon, J. (2008). Linear Algebra, Web edition, http://joshua.smcvt.edu/math/hefferon.html.
[11] Jourlin, M. and Pinoli, J.C. (1987). Logarithmic image processing, Acta Stereologica 6(1): 651–656.
[12] Jourlin, M. and Pinoli, J.C. (1988). A model for logarithmic image processing, Journal of Microscopy 149(1): 21–35.
[13] Jourlin, M. and Pinoli, J.C. (1995). Image dynamic range enhancement and stabilization in the context of the logarithmic image processing model, Signal Processing 41(2): 225–237.
[14] Kristan, M., Pers, J., Perse, M. and Kovacic, S. (2006). A Bayes-spectral-entropy-based measure of camera focus using a discrete cosine transform, Pattern Recognition Letters 27(13): 1431–1439.
[15] Krotkov, E. (1987). Focusing, International Journal of Computer Vision 1(3): 223–237.
[16] Larson, E.C. and Chandler, D.M. (2010). Most apparent distortion: Full-reference image quality assessment and the role of strategy, Journal of Electronic Imaging 19(1): 011006.
[17] Lee, S., Yoo, J., Kumar, Y. and Kim, S. (2009). Reduced energy-ratio measure for robust autofocusing in digital camera, IEEE Signal Processing Letters 16(2): 133–136.
[18] Li, X., He, M. and Roux, M. (2010). Multifocus image fusion based on redundant wavelet transform, IET Image Processing 4(4): 283–293.
[19] Lim, J.S. (1990). Two Dimensional Signal and Image Processing, Prentice Hall, Upper Saddle River, NJ.
[20] Macmillan, N. and Creelman, C. (Eds) (2005). Detection Theory: A User’s Guide, Lawrence Erlbaum, Mahwah, NJ.
[21] Nayar, S. and Nakagawa, Y. (1994). Shape from focus, IEEE Transactions on Pattern Analysis and Machine Intelligence 16(8): 824–831.
[22] Oppenheim, A.V. (1965). Superposition in a class of non-linear system, Technical report, MIT, Cambridge, MA.
[23] Oppenheim, A.V. (1967). Generalized superposition, Information and Control 11(5,6): 528–536.
[24] Panetta, K., Wharton, E. and Agaian, S. (2008). Human visual system-based image enhancement and logarithmic contrast measure, IEEE Transactions on Systems, Man, and Cybernetics, B: Cybernetics 38(1): 174–188.
[25] Panetta, K., Zhou, Y., Agaian, S. and Wharton, E. (2011). Parameterized logarithmic framework for image enhancement, IEEE Transactions on Systems, Man, and Cybernetics, B: Cybernetics 41(2): 460–472.
[26] Pinoli, J.C. and Debayle, J. (2007). Logarithmic adaptive neighborhood image processing (LANIP): Introduction, connections to human brightness perception, and application issues, EURASIP Journal on Advances in Signal Processing 036105(1), Article ID 36105, DOI: 10.1155/2007/36105.
[27] Ponomarenko, N., Lukin, V., Zelensky, A., Egiazarian, K., Carli, M. and Battisti, F. (2009). A database for evaluation of full-reference visual quality assessment metrics, Advances of Modern Radioelectronics 10(1): 30–45.
[28] Pătraşcu, V. and Voicu, I. (2000). An algebraical model for gray level images, Proceedings of the Exhibition on Optimization of Electrical and Electronic Equipment, OPTIM, Brasov, Romania, pp. 809–812.
[29] Ramanath, R., Snyder, W., Yoo, Y. and Drew, M. (2005). Color image processing pipeline: A general survey of digital still camera processing, IEEE Signal Processing Magazine 22(1): 34–43.
[30] Russell, S.J. and Norvig, P. (2003). Artificial Intelligence: A Modern Approach, Prentice Hall, Upper Saddle River, NJ.
[31] Stevens, J. and Stevens, S. (1963). Brightness functions: Effects of adaptation, Journal of the Optical Society of America 53(3): 375–385.
[32] Stevens, S. (1961). To honor Fechner and repeal his law, Science 133(3446): 80–133.
[33] Subbarao, M. and Tyan, J. (1998). Selecting the optimal focus measure for autofocussing and depth-from-focus, IEEE Transactions on Pattern Analysis and Machine Intelligence 20(8): 864–870.
[34] Sun, Y., Duthaler, S. and Nelson, B. (2005). Autofocusing algorithm selection in computer microscopy, Proceedings of the International Conference on Intelligent Robots and Systems, Edmonton, Canada, pp. 809–812.
[35] Svahn, F. (1996). Tools and Methods to Obtain a Passive Autofocus System, Master’s thesis, Technical University of Linkoping, Linkoping, www.viktoria.se/˜fresva/documents/master_thesis.pdf.
[36] Vertan, C., Oprea, A., Florea, C. and Florea, L. (2008). A pseudo-logarithmic framework for edge detection, in J.B. Talon, S. Bourennane, W. Philips, D. Popescu and P. Scheunders (Eds.), Advances in Computer Vision, Lecture Notes in Computer Science, Vol. 5259, Springer-Verlag, Juan-les-Pins, pp. 637–644.
[37] Vollath, D. (1987). Automatic focusing by correlative methods, Journal of Microscopy 147(3): 279–288.
[38] Wu, Q.Z. and Jeng, B.S. (2002). Background subtraction based on logarithmic intensities, Pattern Recognition Letters 23(13): 1529–1536.