Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2013_23_3_a1, author = {Kaczorek, T.}, title = {Approximation of fractional positive stable continuous-time linear systems by fractional positive stable discrete-time systems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {501--506}, publisher = {mathdoc}, volume = {23}, number = {3}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_3_a1/} }
TY - JOUR AU - Kaczorek, T. TI - Approximation of fractional positive stable continuous-time linear systems by fractional positive stable discrete-time systems JO - International Journal of Applied Mathematics and Computer Science PY - 2013 SP - 501 EP - 506 VL - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_3_a1/ LA - en ID - IJAMCS_2013_23_3_a1 ER -
%0 Journal Article %A Kaczorek, T. %T Approximation of fractional positive stable continuous-time linear systems by fractional positive stable discrete-time systems %J International Journal of Applied Mathematics and Computer Science %D 2013 %P 501-506 %V 23 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_3_a1/ %G en %F IJAMCS_2013_23_3_a1
Kaczorek, T. Approximation of fractional positive stable continuous-time linear systems by fractional positive stable discrete-time systems. International Journal of Applied Mathematics and Computer Science, Tome 23 (2013) no. 3, pp. 501-506. http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_3_a1/
[1] Berman, A. and Plemmons, R.J. (1994). Nonnegative Matrices in the Mathematical Sciences, SIAM, Philadelphia, PA.
[2] Busłowicz, M. (2008). Stability of linear continuous-time fractional order systems with delays of the retarded type, Bulletin of the Polish Academy of Sciences: Technical Sciences 56(4): 319–324.
[3] Busłowicz, M. (2012). Stability analysis of continuous-time linear systems consisting of n subsystems with different fractional orders, Bulletin of the Polish Academy of Sciences: Technical Sciences 60(2): 279–284.
[4] Busłowicz, M. and Kaczorek, T. (2009). Simple conditions for practical stability of positive fractional discrete-time linear systems, International Journal of Applied Mathematics and Computer Science 19(2): 263–269, DOI: 10.2478/v10006-009-0022-6.
[5] Farina, L. and Rinaldi, S. (2000). Positive Linear Systems: Theory and Applications, J. Wiley, New York, NY.
[6] Gantmakher, F.R. (1959). Theory of Matrices, Chelsea Pub. Co., New York, NY.
[7] Kaczorek, T. (2002). Positive 1D and 2D Systems, Springer-Verlag, London.
[8] Kaczorek, T. (1999). Relationship between the value of discretisation step and positivity and stabilization of linear dynamic systems, Proceedings of the Conference on Simulation, Designing and Control of Foundry Processes, Kraków, Poland, pp. 33–39.
[9] Kaczorek, T. (1998). Vectors and Matrices in Automation and Electrotechnics, WNT, Warsaw, (in Polish).
[10] Kaczorek, T. (2011). Selected Problems of Fractional System Theory, Springer-Verlag, Berlin.
[11] Kaczorek, T. (2013). Approximation of positive stable continuous-time linear systems by positive stable discrete-time systems, Pomiary Automatyka Robotyka 59 (2): 359–364.
[12] Kaczorek, T. (2011). Necessary and sufficient conditions of stability of fractional positive continuous-time linear systems, Acta Mechanica et Automatica 5(2): 52–54.